π SparseCoding
The SparseCoding
class implements sparse coding with dictionary learning using
L1 regularization or elastic net (L1+L2) regularization. Sparse coding is a
form of representation learning, and can be used to represent each point in a
dataset as a sparse combination of atoms in the dictionary.
Simple usage example:
// Create a random dataset with 100 points in 40 dimensions, and then a random
// test dataset with 50 points.
arma::mat data(40, 100, arma::fill::randu);
arma::mat testData(40, 50, arma::fill::randu);
// Perform sparse coding with 20 atoms and an L1 penalty of 0.5.
mlpack::SparseCoding sc(20, 0.5); // Step 1: create object.
double objective = sc.Train(data); // Step 2: learn dictionary.
arma::mat codes;
sc.Encode(testData, codes); // Step 3: encode new data.
// Print some information about the test encoding.
std::cout << "Average density of encoded test data: "
<< 100.0 * arma::mean(arma::sum(codes != 0)) / codes.n_rows << "\%."
<< std::endl;
Quick links:
- Constructors: create
SparseCoding
objects. Train()
: train model (learn dictionary).Encode()
: encode points with a trained model.- Other functionality for loading, saving, and inspecting.
- Examples of simple usage and links to detailed example projects.
- Template parameters for advanced functionality: different element types and dictionary initialization strategies.
See also:
LocalCoordinateCoding
LARS
(used internally bySparseCoding
)- mlpack transformations
- Sparse dictionary learning on Wikipedia
- Efficient sparse coding algorithms (pdf)
π Constructors
sc = SparseCoding()
sc = SparseCoding(atoms=0, lambda1=0.0, lambda2=0.0, maxIter=0, objTol=0.01, newtonTol=1e-6)
- Create a
SparseCoding
object without learning a dictionary on data. - If
atoms
is set to0
(the default), it will need to be set to a value greater than0
beforeTrain()
is called (sc.Atoms() = atoms
can be used for this).
- Create a
sc = SparseCoding(data, atoms, lambda1=0.0, lambda2=0.0, maxIter=0, objTol=0.01, newtonTol=1e-6)
- Create a
SparseCoding
object and train the dictionary on the givendata
. - The dictionary will contain
atoms
elements.
- Create a
sc = SparseCoding(data, atoms, lambda1, lambda2, maxIter, objTol, newtonTol, initializer)
- Advanced constructor: create a
SparseCoding
object that will use a custom dictionary initializer and train on the givendata
. - The dictionary will contain
atoms
elements. initializer
will be used to initialize the dictionary; see Advanced Functionality: Different Dictionary Initialization Strategies for details.
- Advanced constructor: create a
Constructor Parameters:
name | type | description | default |
---|---|---|---|
data |
arma::mat |
Column-major training matrix. | (N/A) |
atoms |
size_t |
Number of atoms in dictionary. | (N/A) |
lambda1 |
double |
L1 regularization penalty. Used in both Train() and Encode() steps. |
0.0 |
lambda2 |
double |
L2 regularization penalty (for elastic net regularization). Used in both Train() and Encode() steps. |
0.0 |
maxIter |
size_t |
Maximum number of iterations for dictionary learning. 0 means no limit. |
0 |
objTol |
double |
Objective function tolerance for terminating dictionary learning. | 0.01 |
newtonTol |
double |
Tolerance for the Newtonβs method dictionary optimization step. | 1e-6 |
As an alternative to passing atoms
, lambda1
, lambda2
, maxIter
, objTol
,
or newtonTol
, these can be set with a standalone method. The following
functions can be used before calling Train()
:
-
sc.Atoms() = a;
will set the number of atoms to use in the dictionary toa
. Changing this after callingTrain()
will not make a difference to the dictionary size. -
sc.Lambda1() = l1;
will set the L1 regularization penalty tol1
. This can be set afterTrain()
to force sparser encodings whenEncode()
is called. -
sc.Lambda2() = l2;
will set the L2 regularization penalty tol2
. This can be set afterTrain()
to increase the regularization whenEncode()
is called. -
sc.MaxIterations() = m;
will set the maximum number of iterations for dictionary learning tom
.0
means that the algorithm will run until convergence. -
sc.ObjTolerance() = ot;
will set the objective tolerance for convergence of the dictionary learning algorithm toot
. -
sc.NewtonTolerance() = nt;
will set the tolerance for the Newtonβs method dictionary optimization step tont
.
Caveats:
-
Larger settings of
atoms
(i.e. larger dictionary sizes) will be able to more accurately represent the data, but may take longer to learn. -
Larger values of
lambda1
will cause the model to use sparser codings for data whenTrain()
andEncode()
are called, but codings that are too sparse may be inaccurate representations of the original points. -
Training is not incremental; a second call to
Train()
will reinitialize the dictionary and restart the learning process.
π Training
If training the dictionary is not done as part of the constructor call, it can
be done with one of the following versions of the Train()
member function:
sc.Train(data)
sc.Train(data, initializer)
- Train the sparse coding dictionary on the given
data
. - Optionally, use the given
initializer
to initialize the dictionary (seeDictionaryInitializer
for more details).
- Train the sparse coding dictionary on the given
π Encoding
Once a SparseCoding
model has a trained dictionary, the Encode()
member
function can be used to encode new data points.
sc.Encode(data, codes)
- Encode
data
(a column-major data matrix) as a set of sparse codes of the dictionary, storing the result incodes
. - Both
data
andcodes
should be the same matrix type (e.g.arma::mat
); see Different Element Types for more details. codes
will be set to haveatoms
rows anddata.n_cols
columns.- Column
i
ofcodes
corresponds to the sparse coding of thei
βth column ofdata
. Each row represents the weight associated with each atom in the dictionary.
- Encode
After encoding, the original data can be recovered (approximately) as
sc.Dictionary() * data
.
π Other Functionality
-
A
SparseCoding
model can be serialized withdata::Save()
anddata::Load()
. -
sc.Dictionary()
will return anarma::mat&
containing the dictionary matrix. The matrix hasdata.n_rows
rows andatoms
columns; each column corresponds to an atom in the dictionary. -
double obj = sc.Objective(data, codes)
computes the sparse coding objective function on the givendata
and encodingscodes
. This can be used afterEncode()
to test the quality of the encodings (a smaller objective is better).
π Simple Examples
See also the simple usage example for a trivial usage
of the SparseCoding
class.
Train a sparse coding model on the cloud dataset and print the reconstruction error.
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::data::Load("cloud.csv", dataset, true);
mlpack::SparseCoding sc;
sc.Atoms() = 50;
sc.Lambda1() = 0.1;
sc.Lambda2() = 0.001;
sc.MaxIterations() = 25;
sc.Train(dataset);
// Encode the training dataset.
arma::mat codes;
sc.Encode(dataset, codes);
std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
<< "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
<< "." << std::endl;
// Reconstruct the original matrix.
arma::mat recon = sc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
Train a sparse coding model on the iris dataset and save the model to disk.
// See https://datasets.mlpack.org/iris.train.csv.
arma::mat dataset;
mlpack::data::Load("iris.train.csv", dataset, true);
// Train the model in the constructor.
mlpack::SparseCoding sc(dataset, 10 /* atoms */, 0.1 /* L1 penalty */);
// Save the model to disk.
mlpack::data::Save("sc.bin", "sc", sc);
Load a sparse coding model from disk and encode some new points from the iris dataset.
// Load model from disk.
mlpack::SparseCoding sc;
mlpack::data::Load("sc.bin", "sc", sc);
// See https://datasets.mlpack.org/iris.test.csv.
arma::mat dataset;
mlpack::data::Load("iris.test.csv", dataset, true);
// Encode the test points.
arma::mat codes;
sc.Encode(dataset, codes);
// Compute the sparse coding objective on the test points.
const double obj = sc.Objective(dataset, codes);
std::cout << "Sparse coding objective on test set: " << obj << "." << std::endl;
Train a sparse coding model on the satellite dataset, trying several different dictionary sizes and checking the objective value on a held-out test dataset.
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);
// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testData;
mlpack::data::Load("satellite.test.csv", testData, true);
for (size_t atoms = 20; atoms < 100; atoms += 10)
{
mlpack::SparseCoding sc(atoms);
sc.Lambda1() = 0.1;
sc.MaxIterations() = 20; // Keep iterations low so this runs relatively fast.
const double trainObj = sc.Train(trainData);
// Compute the objective on the test set.
arma::mat codes;
sc.Encode(testData, codes);
const double testObj = sc.Objective(testData, codes);
std::cout << "Atoms: " << std::setfill(' ') << std::setw(3) << atoms << "; ";
std::cout << "training set objective: " << std::setw(6) << trainObj << "; ";
std::cout << "test set objective: " << std::setw(6) << testObj << "."
<< std::endl;
}
π Advanced Functionality: Template Parameters
The SparseCoding
class has one class template parameter that can be used for
custom behavior. The full signature of the class is:
SparseCoding<MatType>
In addition, the constructors and
Train()
functions have a template parameter
DictionaryInitializer
that can be used for custom behavior.
-
MatType
: the type of the matrix to use (e.g.arma::mat
,arma::fmat
, etc.). The givenMatType
must support the Armadillo API and hold a floating-point element type (e.g.float
,double
, etc.). -
DictionaryInitializer
: the strategy used to initialize the dictionary. By default,DataDependentRandomInitializer
is used.
MatType
: Different Element Types
MatType
specifies the type of matrix used for training data and internal
representation of the dictionary. Any matrix type that implements the Armadillo
API can be used. The example below trains a sparse coding model on 32-bit
floating point data.
// See https://datasets.mlpack.org/cloud.csv.
arma::fmat dataset;
mlpack::data::Load("cloud.csv", dataset, true);
mlpack::SparseCoding<arma::fmat> sc;
sc.Atoms() = 30;
sc.Lambda1() = 0.15;
sc.Lambda2() = 0.001;
sc.MaxIterations() = 100;
// Note: a looser tolerance is often required when using floats instead of
// doubles.
sc.ObjTolerance() = 0.01;
sc.Train(dataset);
// Encode the training dataset.
arma::fmat codes;
sc.Encode(dataset, codes);
std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
<< "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
<< "." << std::endl;
// Reconstruct the original matrix.
arma::fmat recon = sc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
DictionaryInitializer
: Different Dictionary Initialization Strategies
The DictionaryInitializer
template class specifies the strategy to be used to
initialize the dictionary when Train()
is called.
-
The
DataDependentRandomInitalizer
class (the default) uses the average of three random points in the dataset to initialize each atom in the dictionary. -
The
NothingInitializer
class does not modify the dictionary matrix in any way, and could be used either to set a specific dictionary before training withsc.Dictionary()
, or to allow incremental training that does not modify the existing dictionary whenTrain()
is called a second time. -
The
RandomInitializer
class initializes the dictionary by sampling norm-1 atoms from a normal distribution.
Note: none of the classes above have any members, and as such it is not
necessary to use the constructor or Train()
variants that take an initialized
initializer
object. That would only be necessary for a custom
DictionaryInitializer
class that stored internal members.
The example below uses NothingInitializer
to set a specific initial
dictionary.
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);
const size_t atoms = 25;
const double lambda1 = 0.1;
const double lambda2 = 0.0;
const size_t maxIterations = 50;
// Use a uniform random matrix as the initial dictionary.
arma::mat initialDictionary(trainData.n_rows, atoms, arma::fill::randu);
mlpack::SparseCoding sc(atoms, lambda1, lambda2, maxIterations);
sc.Dictionary() = initialDictionary;
const double obj = sc.Train<mlpack::NothingInitializer>(trainData);
std::cout << "Training set objective: " << obj << "." << std::endl;
- An entirely custom class can also be implemented. The class must implement
one method,
Initialize()
:
// You can use this as a starting point for implementation.
class CustomDictionaryInitializer
{
public:
// Initialize the dictionary to have the given number of atoms, given the
// dataset. MatType will be the matrix type used by the sparse coding model
// (e.g. `arma::mat`, `arma::fmat`, etc.).
template<typename MatType>
void Initialize(const MatType& data,
const size_t atoms,
MatType& dictionary);
};