🔗 LMNN
The LMNN class implements large margin nearest neighbor, which can be used
as both a linear dimensionality reduction technique and a distance learning
technique (also called metric learning). LMNN finds a linear transformation of
the dataset that improves k-nearest-neighbor classification performance.
Simple usage example:
// Learn a distance metric that improves kNN classification performance.
// All data and labels are uniform random; 10 dimensional data, 5 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
mlpack::LMNN lmnn(3 /* neighbors to consider */); // Step 1: create object.
arma::mat distance;
lmnn.LearnDistance(dataset, labels, distance); // Step 2: learn distance.
// `distance` can now be used as a transformation matrix for the data.
arma::mat transformedData = distance * dataset;
// Or, you can create a MahalanobisDistance to evaluate points in the
// transformed dataset space.
arma::mat q = distance.t() * distance;
mlpack::MahalanobisDistance d(std::move(q));
std::cout << "Distance between points 0 and 1:" << std::endl;
std::cout << " - Before LMNN: "
<< mlpack::EuclideanDistance::Evaluate(dataset.col(0), dataset.col(1))
<< "." << std::endl;
std::cout << " - After LMNN: "
<< d.Evaluate(dataset.col(0), dataset.col(1)) << "." << std::endl;
Quick links:
- Constructors: create
LMNNobjects. LearnDistance(): learn distance metrics.- Other functionality for loading and saving.
- Examples of simple usage and integration with other techniques.
See also:
- mlpack distance metrics
NCA- Metric learning on Wikipedia
- Large margin nearest neighbor on Wikipedia
- Distance metric learning for Large Margin Nearest Neighbor Classification (pdf)
🔗 Constructors
lmnn = LMNN(k, regularization=0.5, updateInterval=1)- Create an
LMNNobject considering the specified numberkof neighbors. - Optionally, specify the regularization to be applied to the LMNN cost
function (a
double), and the number of iterations between recomputation of neighbors (updateInterval, asize_t).
- Create an
lmnn = LMNN<DistanceType>(k, regularization=0.5, updateInterval=1)lmnn = LMNN<DistanceType>(k, regularization, updateInterval, distance)- Create an
LMNNobject using a customDistanceType. kspecifies the number of neighbors to consider.regularizationspecifies the regularization penalty to be applied to the LMNN cost function (adouble).updateIntervalspecifies the number of iterations between recomputation of neighbors (asize_t).- An instantiated
DistanceTypecan optionally be passed with thedistanceparameter. - Using a custom
DistanceTypemeans thatLearnDistance()will learn a linear transformation for the data in the metric space of the customDistanceType.- This means any learned distance may not necessarily improve classification performance with the Euclidean distance.
- Instead, classification performance will be improved when the learned
distance is used with the given
DistanceTypeonly.
- Any mlpack
DistanceTypecan be used as a drop-in replacement, or a customDistanceType.- A list of mlpack’s provided distance metrics can be found here.
- Note: be sure that you understand the implications of a custom
DistanceTypebefore using this version.
- Create an
Notes:
-
A larger
kwill causeLearnDistance()to take longer to compute, but will give more accurate results. It is generally suggested to keepkin roughly the3to5range, depending on the dataset. Usingk = 1can provide fast convergence, but the learned distance metric may be of lower quality. -
regularizationcontrols the balance between encouraging small distances for points of the same class and penalizing small distances for points of different classes. Whenregularizationis increased, small distances for points of different classes are further penalized. -
Setting
updateIntervalgreater than1will allow the LMNN algorithm to take multiple steps without the expensive recomputation of neighbors, but this means that subsequent optimization steps may not be using the true nearest neighbors.- If using an SGD-like algorithm (i.e. an optimizer for a differentiable separable function), this can often be set to a relatively high value (100 is not unreasonable).
- If using an optimizer like L-BFGS (i.e. a full-batch optimizer for differentiable functions), this should be kept relatively low (going above 10 is not advised).
- It is worth cross-validating different values of the parameter to see what works for your dataset.
🔗 Learning Distances
Once an LMNN object has been created, the LearnDistance() method can be used
to learn a distance.
lmnn.LearnDistance(data, labels, distance, [callbacks...])lmnn.LearnDistance(data, labels, distance, optimizer, [callbacks...])- Learn a distance metric on the given
dataandlabels, fillingdistancewith a transformation matrix that can be used to map the data into the space of the learned distance. - Optionally, pass an instantiated ensmallen optimizer and/or ensmallen callbacks to be used for the learning process.
- If no optimizer is passed,
ens::AMSGradis used. - If
distancealready has sizerxdata.n_rowsfor somerless than or equal todata.n_rows, it will be used as the starting point for optimization. Otherwise, the identity matrix with sizedata.n_rowsxdata.n_rowswill be used. - When optimization is complete,
distancewill have sizerxdata.n_rows, whereris less than or equal todata.n_rows.- Note: If
r < data.n_rows, then LMNN has learned a distance metric that also reduces the dimensionality of the data. See the last example.
- Note: If
- Learn a distance metric on the given
To use distance, either:
- Compute a new transformed dataset as
distance * data, or - Use an instantiated
MahalanobisDistancewithdistance.t() * distanceas theQmatrix.
See the examples section for more details.
LearnDistance() Parameters:
| name | type | description | Â |
|---|---|---|---|
data |
arma::mat |
Column-major training matrix. | Â |
labels |
arma::Row<size_t> |
Training labels, between 0 and numClasses - 1 (inclusive). Should have length data.n_cols. |
 |
distance |
arma::mat |
Output matrix to store transformation matrix representing learned distance. | Â |
optimizer |
any ensmallen optimizer | Instantiated ensmallen optimizer for differentiable functions or differentiable separable functions. | ens::AMSGrad() |
callbacks... |
any set of ensmallen callbacks | Optional callbacks for the ensmallen optimizer, such as e.g. ens::ProgressBar(), ens::Report(), or others. |
(N/A) |
Note: any matrix type can be used for data and distance, so long as
that type implements the Armadillo API. So, e.g., arma::fmat can be used.
🔗 Other Functionality
-
An
LMNNobject can be serialized withdata::Save()anddata::Load(). Note that this is only meaningful if a customDistanceTypeis being used, and that customDistanceTypehas state to be saved. -
lmnn.K()returns the number of neighbors used by LMNN, andlmnn.K() = kwill set the number of neighbors to use tok. -
lmnn.Regularization()returns the current regularization value of the LMNN object (as adouble), andlmnn.Regularization() = rcan be used to set the regularization value tor. -
lmnn.UpdateInterval()returns the current number of iterations between neighbor recomputation (as asize_t), andlmnn.UpdateInterval() = isets the number of iterations between neighbor recomputation toi. -
lmnn.Distance()will return theDistanceTypebeing used for learning. Unless a customDistanceTypewas specified in the constructor, this simply returns aSquaredEuclideanDistanceobject.
🔗 Simple Examples
Learn a distance metric to improve classification performance on the iris
dataset, and show improved performance when using
NaiveBayesClassifier.
// See https://datasets.mlpack.org/satellite.test.csv.
// (We are using the test set here just because it is a little smaller and
// we want this example to run quickly.)
arma::mat dataset;
mlpack::data::Load("satellite.test.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.test.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.test.labels.csv", labels, true);
// Create an LMNN object using 5 nearest neighbors and learn a distance.
arma::mat distance;
mlpack::LMNN lmnn(5);
lmnn.LearnDistance(dataset, labels, distance);
// The distance matrix has size equal to the dimensionality of the data.
std::cout << "Learned distance size: " << distance.n_rows << " x "
<< distance.n_cols << "." << std::endl;
// Learn a NaiveBayesClassifier model on the data and print the performance.
mlpack::NaiveBayesClassifier nbc1(dataset, labels, 2);
arma::Row<size_t> predictions;
nbc1.Classify(dataset, predictions);
std::cout << "Naive Bayes Classifier without LMNN: "
<< arma::accu(labels == predictions) << " of " << labels.n_elem
<< " correct." << std::endl;
// Now transform the data and learn another NaiveBayesClassifier.
arma::mat transformedDataset = distance * dataset;
mlpack::NaiveBayesClassifier nbc2(transformedDataset, labels, 2);
nbc2.Classify(transformedDataset, predictions);
std::cout << "Naive Bayes Classifier with LMNN: "
<< arma::accu(labels == predictions) << " of " << labels.n_elem
<< " correct." << std::endl;
Learn a distance metric on the vehicle dataset, using 32-bit floating point to represent the data and metric.
// See https://datasets.mlpack.org/vehicle.csv.
arma::fmat dataset;
mlpack::data::Load("vehicle.csv", dataset, true);
// The labels are contained as the last row of the dataset.
arma::Row<size_t> labels =
arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);
// Create an LMNN object with k=1 and learn distance on float32 data.
// Set updateInterval to a large value (100) because we are using the default
// AMSGrad optimizer (which will take very many small steps).
arma::fmat distance;
mlpack::LMNN lmnn(1, 0.5, 100);
lmnn.LearnDistance(dataset, labels, distance, ens::ProgressBar());
// We want to compute six quantities:
//
// - Average distance to points of the same class before LMNN.
// - Average distance to points of the same class after LMNN, using
// MahalanobisDistance.
// - Average distance to points of the same class after LMNN, using the
// transformed dataset.
//
// - The same three quantities above, but for points of the other class.
//
// LMNN should reduce the average distance to points in the same class, while
// increasing the average distance to points in other classes.
float distSums[6] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
size_t sameCount = 0;
arma::fmat q = distance.t() * distance;
mlpack::MahalanobisDistance md(std::move(q));
arma::fmat transformedDataset = distance * dataset;
for (size_t i = 1; i < dataset.n_cols; ++i)
{
const double d1 = mlpack::EuclideanDistance::Evaluate(
dataset.col(0), dataset.col(i));
const double d2 = md.Evaluate(dataset.col(0), dataset.col(i));
const double d3 = mlpack::EuclideanDistance::Evaluate(
transformedDataset.col(0), transformedDataset.col(i));
// Determine whether the point has the same label as point 0.
if (labels[i] == labels[0])
{
distSums[0] += d1;
distSums[1] += d2;
distSums[2] += d3;
++sameCount;
}
else
{
distSums[3] += d1;
distSums[4] += d2;
distSums[5] += d3;
}
}
// Turn the results into average distances across the class.
distSums[0] /= sameCount;
distSums[1] /= sameCount;
distSums[2] /= sameCount;
distSums[3] /= (dataset.n_cols - sameCount);
distSums[4] /= (dataset.n_cols - sameCount);
distSums[5] /= (dataset.n_cols - sameCount);
// Print the results.
std::cout << "Average distance between point 0 and other points of the same "
<< "class:" << std::endl;
std::cout << " - Before LMNN: " << distSums[0] << "."
<< std::endl;
std::cout << " - After LMNN (with MahalanobisDistance): " << distSums[1] << "."
<< std::endl;
std::cout << " - After LMNN (with transformed dataset): " << distSums[2] << "."
<< std::endl;
std::cout << std::endl;
std::cout << "Average distance between point 0 and points of other classes: "
<< std::endl;
std::cout << " - Before LMNN: " << distSums[3] << "."
<< std::endl;
std::cout << " - After LMNN (with MahalanobisDistance): " << distSums[4] << "."
<< std::endl;
std::cout << " - After LMNN (with transformed dataset): " << distSums[5] << "."
<< std::endl;
std::cout << std::endl;
std::cout << "Ratio of other-class to same-class distances:" << std::endl;
std::cout << "(We expect this to go up.)" << std::endl;
std::cout << " - Before LMNN: " << (distSums[3] / distSums[0]) << "."
<< std::endl;
std::cout << " - After LMNN: " << (distSums[5] / distSums[2]) << "."
<< std::endl;
Learn a distance metric on the iris dataset, using the L-BFGS optimizer with callbacks.
// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);
// Learn a distance with ensmallen's L-BFGS optimizer.
ens::L_BFGS lbfgs;
lbfgs.NumBasis() = 5;
lbfgs.MaxIterations() = 1000;
// Use 5 neighbors for LMNN, and leave updateInterval at the default of 1,
// because we are using L-BFGS (a full-back optimizer).
mlpack::LMNN lmnn(5);
// Use a callback that prints a final optimization report.
arma::mat distance;
lmnn.LearnDistance(dataset, labels, distance, lbfgs, ens::Report());
Learn a distance metric on the vehicle dataset, but instead of using the Euclidean distance as the underlying metric, use the Manhattan distance. This means that LMNN is optimizing k-NN performance under the Manhattan distance, not under the Euclidean distance.
// See https://datasets.mlpack.org/vehicle.csv.
arma::mat dataset;
mlpack::data::Load("vehicle.csv", dataset, true);
// The labels are contained as the last row of the dataset.
arma::Row<size_t> labels =
arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);
// Create the LMNN object and optimize. Use k=3 and Nesterov momentum SGD,
// printing a progress bar during optimization. Because Nesterov momentum SGD
// is an ensmallen optimizer for differentiable separable functions, we increase
// updateInterval to reduce the number of neighbor recomputations. We also set
// the regularization parameter to 1.0 to increase the penalty for nearby
// neighbors of a different class.
mlpack::LMNN<mlpack::ManhattanDistance> lmnn(3, 1.0, 100);
arma::mat distance;
ens::NesterovMomentumSGD opt(0.000001 /* step size */,
32 /* batch size */,
20 * dataset.n_cols /* 20 epochs */);
lmnn.LearnDistance(dataset, labels, distance, opt, ens::ProgressBar());
// Now inspect distances between points with the Euclidean distance and with the
// inner product distance.
arma::mat transformedDataset = distance * dataset;
// Points 0 and 1 have the same label (0). See their original distance---with
// both the Euclidean and Manhattan distances---and their transformed distances.
// We expect these points to get closer together, in the Manhattan distance.
const double d1 = mlpack::ManhattanDistance::Evaluate(
dataset.col(0), dataset.col(1));
const double d2 = mlpack::ManhattanDistance::Evaluate(
transformedDataset.col(0), transformedDataset.col(1));
std::cout << "Distance between points 0 and 1 (same class):" << std::endl;
std::cout << " - Manhattan distance:" << std::endl;
std::cout << " * Before LMNN: " << d1 << std::endl;
std::cout << " * After LMNN: " << d2 << std::endl;
std::cout << std::endl;
// Point 3 has a different label. We therefore expect this point to get further
// from point 0 with the Manhattan distance, but not necessarily with the
// Euclidean distance.
const double d3 = mlpack::ManhattanDistance::Evaluate(
dataset.col(0), dataset.col(3));
const double d4 = mlpack::ManhattanDistance::Evaluate(
transformedDataset.col(0), transformedDataset.col(3));
std::cout << "Distance between points 0 and 3 (different class):" << std::endl;
std::cout << " - Manhattan distance:" << std::endl;
std::cout << " * Before LMNN: " << d3 << std::endl;
std::cout << " * After LMNN: " << d4 << std::endl;
// Note that point 3 has been moved further away from point 0 than point 1.
Learn a distance metric while also performing dimensionality reduction, reducing the dimensionality of the satellite dataset by 3 dimensions.
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);
// Use a random initialization for the distance transformation, with the
// specified output dimensionality.
arma::mat distance(dataset.n_rows - 3, dataset.n_rows, arma::fill::randu);
mlpack::LMNN lmnn(3);
ens::L_BFGS opt;
opt.MaxIterations() = 10; // You may want more in a real application.
lmnn.LearnDistance(dataset, labels, distance, opt, ens::Report());
// Now transform the dataset.
arma::mat transformedData = distance * dataset;
std::cout << "Original data has size " << dataset.n_rows << " x "
<< dataset.n_cols << "." << std::endl;
std::cout << "Transformed data has size " << transformedData.n_rows << " x "
<< transformedData.n_cols << "." << std::endl;