🔗 AdaBoost
The AdaBoost
class implements the ‘adaptive boosting’ classifier AdaBoost.MH.
This classifier is an ensemble of weak learners. The AdaBoost
class offers
control over the weak learners and other behavior via template parameters. By
default, the Perceptron
class is used as a weak learner.
AdaBoost
is useful for classifying points with discrete labels (i.e. 0
,
1
, 2
).
Simple usage example:
Train an AdaBoost model on random data and predict labels on a random test set.
// Train an AdaBoost model on random data and predict labels on test data:
// All data and labels are uniform random; 10 dimensional data, 5 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
arma::mat testDataset(10, 500, arma::fill::randu); // 500 test points.
mlpack::AdaBoost ab; // Step 1: create model.
ab.Train(dataset, labels, 5); // Step 2: train model.
arma::Row<size_t> predictions;
ab.Classify(testDataset, predictions); // Step 3: classify points.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 3) << " test points classified as class "
<< "3." << std::endl;
Quick links:
- Constructors: create
AdaBoost
objects. Train()
: train model.Classify()
: classify with a trained model.- Other functionality for loading, saving, and inspecting.
- Examples of simple usage and links to detailed example projects.
- Template parameters for custom behavior.
- Advanced template examples of use with custom template parameters.
See also:
🔗 Constructors
ab = AdaBoost(tolerance=1e-6)
- Initialize model without training.
- You will need to call
Train()
later to train the tree before callingClassify()
.
ab = AdaBoost(data, labels, numClasses, maxIterations=100, tolerance=1e-6)
- Train model using default weak learner hyperparameters.
ab = AdaBoost(data, labels, numClasses, maxIterations=100, tolerance=1e-6, _[weak learner hyperparameters...]_)
- Train model with custom weak learner hyperparameters.
- Hyperparameters for the weak learner are any arguments to the weak
learner’s
Train()
function that come afternumClasses
orweights
. - The only hyperparameter for the default weak learner (
Perceptron
) ismaxIterations
. - See examples of this constructor in use.
Constructor Parameters:
name | type | description | default |
---|---|---|---|
data |
arma::mat |
Column-major training matrix. | (N/A) |
labels |
arma::Row<size_t> |
Training labels, between 0 and numClasses - 1 (inclusive). Should have length data.n_cols . |
(N/A) |
numClasses |
size_t |
Number of classes in the dataset. | (N/A) |
weakLearner |
Perceptron |
An initialized weak learner whose hyperparameters will be used as settings for weak learners during training. | (N/A) |
maxIterations |
size_t |
Maximum number of iterations of AdaBoost.MH to use. This is the maximum number of weak learners to train. (0 means no limit, and weak learners will be trained until the tolerance is met.) | 100 |
tolerance |
double |
When the weighted residual (r_t ) of the model goes below tolerance , training will terminate and no more weak learners will be added. |
1e-6 |
As an alternative to passing hyperparameters, each hyperparameter can be set
with a standalone method. The following functions can be used before calling
Train()
to set hyperparameters:
ab.MaxIterations() = maxIter;
will set the maximum number of weak learners during training tomaxIter
.ab.Tolerance() = tol;
will set the tolerance totol
.
Note: different types of weak learners can be used than
Perceptron
, by changing the WeakLearnerType
template
parameter.
🔗 Training
If training is not done as part of the constructor call, it can be done with one
of the versions of the Train()
member function. For an instance of AdaBoost
named ab
, the following functions for training are available:
ab.Train(data, labels, numClasses, maxIterations=100, tolerance=1e-6)
- Train model using default weak learner parameters.
ab.Train(data, labels, numClasses, maxIterations=100, tolerance=1e-6, [weak learner hyperparameters...])
- Train model with custom weak learner parameters.
- Hyperparameters for the weak learner are any arguments to the weak
learner’s
Train()
function that come afternumClasses
orweights
. - The only hyperparameter for the default weak learner (
Perceptron
) ismaxIterations
. - See examples of this form in use.
Types of each argument are the same as in the table for constructors above.
Notes:
-
Training is not incremental. A second call to
Train()
will retrain the AdaBoost model from scratch. -
Train()
returns adouble
indicating an upper bound on the training error (specifically, the product of Zt values, as described in the paper).
🔗 Classification
Once an AdaBoost
model is trained, the Classify()
member function can be
used to make class predictions for new data.
size_t predictedClass = ab.Classify(point)
- (Single-point)
- Classify a single point, returning the predicted class.
ab.Classify(point, prediction, probabilitiesVec)
- (Single-point)
- Classify a single point and compute class probabilities.
- The predicted class is stored in
prediction
. - The probability of class
i
can be accessed withprobabilitiesVec[i]
.
ab.Classify(data, predictions)
- (Multi-point)
- Classify a set of points.
- The prediction for data point
i
can be accessed withpredictions[i]
.
ab.Classify(data, predictions, probabilities)
- (Multi-point)
- Classify a set of points and compute class probabilities for each point.
- The prediction for data point
i
can be accessed withpredictions[i]
. - The probability of class
j
for data pointi
can be accessed withprobabilities(j, i)
.
Classification Parameters:
usage | name | type | description |
---|---|---|---|
single-point | point |
arma::vec |
Single point for classification. |
single-point | prediction |
size_t& |
size_t to store class prediction into. |
single-point | probabilitiesVec |
arma::vec& |
arma::vec& to store class probabilities into. |
 |  |  |  |
multi-point | data |
arma::mat |
Set of column-major points for classification. |
multi-point | predictions |
arma::Row<size_t>& |
Vector of size_t s to store class prediction into; will be set to length data.n_cols . |
multi-point | probabilities |
arma::mat& |
Matrix to store class probabilities into (number of rows will be equal to number of classes; number of columns will be equal to data.n_cols ). |
🔗 Other Functionality
-
An
AdaBoost
model can be serialized withdata::Save()
anddata::Load()
. -
ab.NumClasses()
will return asize_t
indicating the number of classes the model was trained on. -
ab.WeakLearners()
will return asize_t
indicating the number of weak learners that the model currently contains. -
ab.Alpha(i)
will return the weight of weak learneri
. -
ab.WeakLearner(i)
will return thei
th weak learner.
For complete functionality, the source code can be consulted. Each method is fully documented.
🔗 Simple Examples
See also the simple usage example for a trivial usage
of the AdaBoost
class.
Train an AdaBoost model using the hyperparameters from an existing weak learner.
// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);
mlpack::AdaBoost ab;
// Train with a custom number of perceptron iterations, and custom AdaBoost
// parameters.
ab.Train(dataset, labels, 3, 75 /* maximum number of weak learners */,
1e-6 /* tolerance for AdaBoost convergence */,
100 /* maximum number of perceptron iterations */);
// Now predict the label of a point and the probabilities of each class.
size_t prediction;
arma::rowvec probabilities;
ab.Classify(dataset.col(10), prediction, probabilities);
std::cout << "Point 11 is predicted to have class " << prediction << "."
<< std::endl;
std::cout << "Probabilities of each class: " << probabilities;
Before training an AdaBoost model, set hyperparameters individually. Save the trained model to disk.
// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);
mlpack::AdaBoost ab;
ab.MaxIterations() = 50; // Use at most 50 weak learners.
ab.Tolerance() = 1e-4; // Set a custom tolerance for convergence.
// Now train, using the hyperparameters specified above.
ab.Train(dataset, labels, 3);
// Save the model to `adaboost_model.bin`.
mlpack::data::Save("adaboost_model.bin", "adaboost_model", ab, true);
Load an AdaBoost model and print some information about it.
// Load a saved model named "adaboost_model" from `adaboost_model.bin`.
mlpack::AdaBoost ab;
mlpack::data::Load("adaboost_model.bin", "adaboost_model", ab, true);
std::cout << "Details about the model in `adaboost_model.bin`:" << std::endl;
std::cout << " - Trained on " << ab.NumClasses() << " classes." << std::endl;
std::cout << " - Tolerance used for training: " << ab.Tolerance() << "."
<< std::endl;
std::cout << " - Number of perceptron weak learners in model"
<< ab.WeakLearners() << "." << std::endl;
// Print some details about the first weak learner, if available. The weak
// learner type is `Perceptron<>`.
if (ab.WeakLearners() > 0)
{
std::cout << " - Weight of first perceptron weak learner: " << ab.Alpha(0)
<< "." << std::endl;
std::cout << " - Biases of first perceptron learner: "
<< ab.WeakLearner(0).Biases().t();
}
See also the following fully-working examples:
🔗 Advanced Functionality: Template Parameters
The AdaBoost
class has two template parameters that can be used for custom
behavior. The full signature of the class is:
AdaBoost<WeakLearnerType, MatType>
WeakLearnerType
: the weak classifier to ensemble in the AdaBoost model.MatType
: specifies the type of matrix used for learning and internal representation of model parameters.
WeakLearnerType
- Specifies the weak learner to use when constructing an AdaBoost model.
- The default
WeakLearnerType
isPerceptron<>
. - The
ID3DecisionStump
class (a custom variant ofDecisionTree
) is available for drop-in usage as a weak learner. - Any custom variant of
Perceptron<>
orDecisionTree<>
can be used; e.g.,Perceptron<SimpleWeightUpdate, RandomPerceptronInitialization>
. - A custom class must implement the following functions for training and classification. Note that this is the same API as mlpack’s classifiers that support instance weights for learning, and so any mlpack classifier supporting instance weights can also be used.
// You can use this as a starting point for implementation.
class CustomWeakLearner
{
public:
// Train the model with the given hyperparameters.
//
// * `MatType` will be an Armadillo-like matrix type (typically `arma::mat`);
// this is the same type as the `MatType` template parameter for the
// `AdaBoost` class.
//
// * `data` and `labels` are the same dataset passed to the `Train()` method
// of `AdaBoost`.
//
// * `weights` contains instance weights for each point (column) of `data`.
//
// Note: there is no restriction on the number or types of hyperparameters
// that can be used, but, they do need default arguments. The example here
// includes two.
template<typename MatType>
void Train(const MatType& data,
const arma::Row<size_t>& labels,
const size_t numClasses,
const arma::rowvec& weights,
const size_t hyperparameterA = 10,
const double hyperparameterB = 0.1);
// Classify the given point. `VecType` will be an Armadillo-like type that is
// a vector that represents a single point.
template<typename VecType>
size_t Classify(const VecType& point);
// Classify the given points in `data`, storing the predicted classifications
// in `predictions`.
template<typename MatType>
void Classify(const MatType& data, arma::Row<size_t>& predictions);
};
MatType
- Specifies the matrix type to use for data when learning a model (or predicting with one).
- By default,
MatType
isarma::mat
(dense 64-bit precision matrix). - Any matrix type implementing the Armadillo API will work; so, for instance,
arma::fmat
orarma::sp_mat
can also be used.
🔗 Advanced Functionality Examples
Train an AdaBoost model using decision stumps as the weak learner (use a
different WeakLearnerType
).
// 1000 random points in 10 dimensions.
arma::mat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
// Train in the constructor.
// Note that we specify decision stumps as the weak learner type, and pass
// hyperparameters for the decision stump (these could be omitted). See the
// DecisionTree documentation for more details on the ID3DecisionStump-specific
// hyperparameters.
mlpack::AdaBoost<mlpack::ID3DecisionStump> ab(dataset, labels, 5,
25 /* maximum number of decision stumps */,
1e-6 /* tolerance for convergence of AdaBoost */,
/** Hyperparameters specific to ID3DecisionStump: **/
10 /* minimum number of points in each leaf of the decision stump */,
1e-5 /* minimum gain for splitting the root node of the decision stump */);
// Create test data (500 points).
arma::mat testDataset(10, 500, arma::fill::randu);
arma::Row<size_t> predictions;
ab.Classify(testDataset, predictions);
// Now `predictions` holds predictions for the test dataset.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 3) << " test points classified as class "
<< "3." << std::endl;
Train an AdaBoost model on 32-bit floating-point precision data (use a different
MatType
).
// 1000 random points in 10 dimensions, using 32-bit precision (float).
arma::fmat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
// Train in the constructor, using floating-point data.
// The weak learner type is now a floating-point Perceptron.
using PerceptronType = mlpack::Perceptron<mlpack::SimpleWeightUpdate,
mlpack::ZeroInitialization,
arma::fmat>;
mlpack::AdaBoost<PerceptronType, arma::fmat> ab(dataset, labels, 5);
// Create test data (500 points).
arma::fmat testDataset(10, 500, arma::fill::randu);
arma::Row<size_t> predictions;
ab.Classify(testDataset, predictions);
// Now `predictions` holds predictions for the test dataset.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 3) << " test points classified as class "
<< "3." << std::endl;