mlpack

🔗 NMF

The NMF class implements non-negative matrix factorization, a technique to decompose a large (potentially sparse) matrix V into two smaller matrices W and H, such that V ~= W * H, and W and H only contain nonnegative elements. This technique may be used for dimensionality reduction, or as part of a recommender system.

The NMF class allows fully configurable behavior via template parameters. For more general matrix factorization strategies, see the AMF (alternating matrix factorization) class documentation.

Simple usage example:

// Create a random sparse matrix (V) of size 10x100, with 15% nonzeros.
arma::sp_mat V;
V.sprandu(100, 100, 0.15);

// W and H will be low-rank matrices of size 100x10 and 10x100.
arma::mat W, H;

mlpack::NMF nmf;                         // Step 1: create object.
double residue = nmf.Apply(V, 10, W, H); // Step 2: apply NMF to decompose V.

// Now print some information about the factorized matrices.
std::cout << "W has size: " << W.n_rows << " x " << W.n_cols << "."
    << std::endl;
std::cout << "H has size: " << H.n_rows << " x " << H.n_cols << "."
    << std::endl;
std::cout << "RMSE of reconstructed matrix: "
    << arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem) << "." << std::endl;

More examples...

See also:

🔗 Constructors



🔗 Applying Decompositions


Notes:


Apply() Parameters:

name type description
V arma::sp_mat or arma::mat Input matrix to be factorized.
rank size_t Rank of decomposition; lower is smaller, higher is more accurate.
W arma::mat Output matrix in which W will be stored.
H arma::mat Output matrix in which H will be stored.

Note: Matrices with different element types can be used for V, W, and H; e.g., arma::fmat. While V can be sparse or dense, W and H must be dense matrices.

🔗 Simple Examples

See also the simple usage example for a trivial use of NMF.


Decompose a dense matrix with custom termination parameters.

// Create a low-rank V matrix by multiplying together two random matrices.
arma::mat V = arma::randu<arma::mat>(500, 25) *
              arma::randn<arma::mat>(25, 5000);

// Create the NMF object with a looser tolerance of 1e-3 and a maximum of 100
// iterations only.
mlpack::NMF nmf(mlpack::SimpleResidueTermination(1e-3, 500));

arma::mat W, H;

// Decompose with a rank of 25.
// W will have size 500 x 25, and H will have size 25 x 5000.
const double residue = nmf.Apply(V, 25, W, H);

std::cout << "Residue of decomposition: " << residue << "." << std::endl;

// Compute RMSE of decomposition.
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE of decomposition: " << rmse << "." << std::endl;

Decompose the sparse MovieLens dataset using a rank-12 decomposition and float element type.

// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_fmat V;
mlpack::data::Load("movielens-100k.csv", V, true);

// Create the NMF object.
mlpack::NMF nmf;

arma::fmat W, H;

// Decompose the Movielens dataset with rank 12.
const double residue = nmf.Apply(V, 12, W, H);

std::cout << "Residue of MovieLens decomposition: " << residue << "."
    << std::endl;

// Compute RMSE of decomposition.
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE of decomposition: " << rmse << "." << std::endl;

Compare quality of decompositions of MovieLens with different ranks.

// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

// Create the NMF object.
mlpack::NMF nmf;
arma::mat W, H;

for (size_t rank = 10; rank <= 100; rank += 15)
{
  // Decompose with the given rank.
  const double residue = nmf.Apply(V, rank, W, H);

  const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
  std::cout << "RMSE for rank-" << rank << " decomposition: " << rmse << "."
      << std::endl;
}

🔗 Advanced Functionality: Template Parameters

The NMF class has three template parameters that can be used for custom behavior. The full signature of the class is:

NMF<TerminationPolicyType, InitializationRuleType, UpdateRuleType>

🔗 Advanced Functionality: TerminationPolicyType


SimpleResidueTermination (default):


MaxIterationTermination:


SimpleToleranceTermination<MatType, WHMatType>:


ValidationRMSETermination<MatType>:


Custom policies:

// You can use this as a starting point for implementation.
class CustomTerminationPolicy
{
 public:
  // Initialize the termination policy for the given matrix V.  (It is okay to
  // do nothing.)  This function is called at the beginning of Apply().
  //
  // If the termination policy requires V to compute convergence, store a
  // reference or pointer to it in this function.
  template<typename MatType>
  void Initialize(const MatType& V);

  // Check if convergence has occurred for the given W and H matrices.  Return
  // `true` if so.
  //
  // Note that W and H may have different types than V (i.e. V may be sparse,
  // and W and H must be dense.)
  template<typename WHMatType>
  bool IsConverged(const MatType& H, const MatType& W);

  // Return the value that should be returned for the `nmf.Apply()` function
  // when convergence has been reached.  This is called at the end of
  // `nmf.Apply()`.
  const double Index();

  // Return the number of iterations that have been completed.  This is called
  // at the end of `nmf.Apply()`.
  const size_t Iteration();
};

🔗 Advanced Functionality: InitializationRuleType


RandomAcolInitialization<N> (default):


NoInitialization:


GivenInitialization<MatType>:


RandomAMFInitialization:


AverageInitialization:


MergeInitialization<WRule, HRule>:


Custom rules:

// You can use this as a starting point for implementation.
class CustomInitialization
{
 public:
  // Initialize the W and H matrices, given V and the rank of the decomposition.
  // This is called at the start of `Apply()`.
  //
  // Note that `MatType` may be different from `WHMatType`; e.g., `V` could be
  // sparse, but `W` and `H` must be dense.
  template<typename MatType, typename WHMatType>
  void Initialize(const MatType& V,
                  const size_t rank,
                  WHMatType& W,
                  WHMatType& H);

  // Initialize one of the W or H matrices, given V and the rank of the
  // decomposition.
  //
  // If `isW` is `true`, then `M` should be treated as though it is `W`;
  // if `isW` is `false`, then `M` should be treated as thought it is `H`.
  //
  // This function only needs to be implemented if it is intended to use the
  // custom initialization strategy with `MergeInitialization`.
  template<typename MatType, typename WHMatType>
  void InitializeOne(const MatType& V,
                     const size_t rank,
                     WHMatType& M,
                     const bool isW);
};

🔗 Advanced Functionality Examples

Use a pre-specified initialization for W and H.

// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

arma::mat W, H;

// Pre-initialize W and H.
// W will be filled with random values from a normal distribution.
// H will be filled with 1s.
W.randn(V.n_rows, 15);
H.set_size(15, V.n_cols);
H.fill(0.2);

mlpack::NMF<mlpack::SimpleResidueTermination, mlpack::NoInitialization> nmf;
const double residue = nmf.Apply(V, 15, W, H);
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);

std::cout << "RMSE of NMF decomposition with pre-specified W and H: " << rmse
    << "." << std::endl;

Use ValidationRMSETermination to decompose the MovieLens dataset until the RMSE of the held-out validation set is sufficiently low.

// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

arma::mat W, H;

// Create a ValidationRMSETermination class that will hold out 3k points from V.
// This will remove 3000 nonzero entries from V.
mlpack::ValidationRMSETermination<arma::sp_mat> t(V, 3000);

// Create the NMF object with the instantiated termination policy.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>> nmf(t);

// Perform NMF with a rank of 20.
// Note the RMSE returned here is the RMSE on the validation set.
const double rmse = nmf.Apply(V, 20, W, H);
const double rmseTrain = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);

std::cout << "Training RMSE:   " << rmseTrain << "." << std::endl;
std::cout << "Validation RMSE: " << rmse << "." << std::endl;

Use all three sets of NMF update rules and compare the RMSE on a held-out validation set.

// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

arma::mat W1, W2, W3;
arma::mat H1, H2, H3;

// Create a ValidationRMSETermination class that will hold out 3k points from V.
// This will remove 3000 nonzero entries from V.
mlpack::ValidationRMSETermination<arma::sp_mat> t(V, 3000);

// Multiplicative distance update rule.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>,
            mlpack::RandomAcolInitialization<5>,
            mlpack::NMFMultiplicativeDistanceUpdate> nmf1(t);

// Multiplicative divergence update rule.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>,
            mlpack::RandomAcolInitialization<5>,
            mlpack::NMFMultiplicativeDivergenceUpdate> nmf2(t);

// Alternating least squares update rule.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>,
            mlpack::RandomAcolInitialization<5>,
            mlpack::NMFALSUpdate> nmf3(t);

const double rmse1 = nmf1.Apply(V, 15, W1, H1);
const double rmse2 = nmf2.Apply(V, 15, W2, H2);
const double rmse3 = nmf3.Apply(V, 15, W3, H3);

// Print the RMSEs.
std::cout << "Mult. dist. update RMSE: " << rmse1 << "." << std::endl;
std::cout << "Mult. div. update RMSE:  " << rmse2 << "." << std::endl;
std::cout << "ALS update RMSE:         " << rmse3 << "." << std::endl;

Use a custom termination policy that sets a limit on how long NMF is allowed to take. First, we define the termination policy:

class CustomTimeTermination
{
 public:
  CustomTimeTermination(const double totalAllowedTime) :
      totalAllowedTime(totalAllowedTime) { }

  template<typename MatType>
  void Initialize(const MatType& /* V */)
  {
    totalTime = 0.0;
    iteration = 0;
    c.tic();
  }

  template<typename WHMatType>
  bool IsConverged(const WHMatType& /* W */, const WHMatType& /* H */)
  {
    totalTime += c.toc();
    c.tic();
    ++iteration;
    return (totalTime > totalAllowedTime);
  }

  const double Index() const { return totalTime; }
  const size_t Iteration() const { return iteration; }

 private:
  double totalAllowedTime;
  double totalTime;
  size_t iteration;
  arma::wall_clock c; // used for convenient timing
};

Then we can use it in the test program:

// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_fmat V;
mlpack::data::Load("movielens-100k.csv", V, true);

CustomTimeTermination t(5 /* seconds */);
mlpack::NMF<CustomTimeTermination> nmf(t);

arma::fmat W, H;
const double actualTime = nmf.Apply(V, 10, W, H);
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);

std::cout << "Actual time used for decomposition: " << actualTime << "."
    << std::endl;
std::cout << "RMSE after ~5 seconds: " << rmse << "." << std::endl;