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ABSTRACT
In this paper we develop density estimation trees (DETs),
the natural analog of classification trees and regression trees,
for the task of density estimation. We consider the estima-
tion of a joint probability density function of a d-dimensional
random vector X and define a piecewise constant estimator
structured as a decision tree. The integrated squared error
is minimized to learn the tree. We show that the method is
nonparametric: under standard conditions of nonparamet-
ric density estimation, DETs are shown to be asymptotically
consistent. In addition, being decision trees, DETs perform
automatic feature selection. They empirically exhibit the in-
terpretability, adaptability and feature selection properties
of supervised decision trees while incurring slight loss in ac-
curacy over other nonparametric density estimators. Hence
they might be able to avoid the curse of dimensionality if
the true density is sparse in dimensions. We believe that
density estimation trees provide a new tool for exploratory
data analysis with unique capabilities.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Models; G.3 [Probability and
Statistics]: Nonparametric statistics

General Terms
Algorithms, Experimentation

Keywords
Decision trees, density estimation, data analysis

1. INTRODUCTION
Three most fundamental tasks of machine learning are

classification, regression, and density estimation. Classifica-
tion and regression are instances of supervised data analysis
where a training set of examples is provided. The learning
task is to estimate a function using the training set which
also performs well on a test set. The third task, density
estimation, is an instance of unsupervised learning. This is
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generally harder because one does not have any instance of
the ground truth regarding the quantity being estimated.
Decision trees [1] have been widely used in the supervised
setting for classification and regression. In this paper we
introduce, derive, and explore the natural analog of classi-
fication trees and regression trees for the unsupervised task
of density estimation. To our knowledge this analogy has
never been explored rigorously, though several other ideas
for density estimation involving hierarchical schemes have
been proposed. Our hope is that the unique advantages of
decision trees in the supervised setting will transfer to the
unsupervised setting, to give rise to a new nonparametric
density estimation method with interesting capabilities.
Density estimation. The problem of density estimation
can be defined as estimating an unknown distribution f on
X 1 with a close approximation f̂ : X → R+ given a set of
N iid (independent and identically distributed) observations
{X1, X2, . . . , XN} ⊂ X drawn from f . Estimating the prob-
ability density of the given data is a fundamental task in
multivariate statistics. It often appears as a subroutine in
other inference – for example, in classification, one is re-

quired to find P̂ (C|X) = p̂(X|C)P (C)
p̂(X)

, where C is one of

the possible K classes and p̂(X|C) is the class-conditional
density of the data X [2, 3, 4]. It is also widely used for
conducting exploratory analyses such as outlier or cluster
detection.
Decision trees. Decision trees [1] were developed for clas-
sification [5] and regression [6]. They are primarily used for
the purpose of supervised learning and have been widely and
successfully used in nonparametric classification and regres-
sion. The piecewise constant estimators and the simplistic
model of univariate binary splits of the data in decision trees
lead to relatively less accurate estimators with unknown con-
vergence rates [7]. Techniques such as bagging are used to
boost this accuracy. More sophisticated methods with bet-
ter accuracies and clearer asymptotic properties such as local
linear regression [8] and support vector machines [9] exist for
regression and classification respectively.

Nonetheless, anecdotally, decision trees remain one of the
more widely used methods in practice [7], possibly even the
most widely used. This is due to the inherent intuitive-
ness, adaptability and interpretability of the models learned.
Moreover, they are capable of dealing with mixed categor-
ical, discrete and continuous variables within one unified
framework. They also perform feature selection and are easy
to implement. These properties come at the cost of accuracy
in prediction but still make decision trees very desirable and

1If all the attributes of the data are continuous then X ⊂ R
d
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Table 1: Characteristics of Methods for Density Estimation

Methods np Accuracy
Interpretability Adaptability Speed

COD VI Rules ABD AWD Training Query

MoG × low � × × × × fast EM algorithm very fast O(d2)
Histogram � low × × × × × fast O(MdN) very fast O(d)

KDE (FBW) � medium × × × × × slow O(HdN2) slow O(dN)
KDE∗ (FBW) � medium × × × × × fast O(HdN) medium O(d logN)

KDE (VBW) � highest × × × � � very slow O(HddN)/q slow O(dN)

KDE∗ (VBW) � high × × × � � slow O(Hdd logN)/q medium O(d logN)
local r-KDE � very high × × × � � fast CV step/q slow O(dN)
global r-KDE � medium/high × × × � × t fast CV steps slow O(dN)
DET � medium � � � � � slow LOO-CV fast O(DT )

practical. Another advantage of decision trees is the effi-
cient test querying once the model (in this case a tree) has
been trained.

Decision trees trade some accuracy for a simple, inter-
pretable model. Considering that density estimation is widely
used in exploratory analysis, giving up accuracy (which is
not a useful concept in the absence of the ground truth) for
understanding is acceptable.

1.1 Nonparametric Density Estimators
Histograms and kernel density estimators (KDEs) [10] are

simpler nonparametric (np) techniques, whereas variants of
KDEs such as rodeo-KDEs [11] and wavelet based methods
[8] are more complex nonparametric estimators. A number
of nonparametric Bayesian methods have also been devel-
oped for the task of density estimation [12]. Mixtures of
Gaussians (MoGs) are widely used parametric density esti-
mators. Even though the nonparametric methods have been
shown to be significantly more accurate than the paramet-
ric methods and require fewer assumptions on the data than
parametric methods, MoGs are widely used because of their
interpretability as clusters (as well as their simple imple-
mentation).
Adaptability and Speed. Adaptability has two implica-
tions in density estimation: (1) adaptable between dimen-
sions (ABD) – the estimation process should treat dimen-
sions differently depending on their influence on the density
(for example, addition of unimportant dimensions of uniform
noise should not affect the estimator) (2) adaptable within
a dimension (AWD) – determining regions of interest for a
given dimension and adjusting the estimator to the local be-
havior of the density in that dimension (for example, regions
with fast changing density vs. regions with flat densities).

MoGs are not known to adapt between or within dimen-
sions. Fixed-bandwidth KDEs (FBW) are accurate non-
parametric estimators but are not adaptable between or
within dimensions because of the restriction of using a mul-
tivariate kernel with the same bandwidth in every dimension
(spherical kernel) for every point. The bandwidth is chosen
through leave-one-out cross-validation (LOO-CV) by pick-
ing the one with the best CV loss among the H different
values tried. A significantly high value of H is required to
obtain accurate results. LOO-CV for the näıve implementa-
tion of KDE takes O(HdN2). Spatial partitioning tree data
structures have been used for fast-approximate computation
of KDEs (KDE∗s) [13, 14]. For cover-trees [15], this process
requires O(HdN) time [16].

Various KDEs with adaptive bandwidths have been devel-
oped but are complicated in practice. The nearest-neighbor

KDEs [10] are locally adaptive by choosing bandwidths based
on their kth-nearest-neighbor distance. However, they are
not adaptive over dimensions since they still use a spherical
multivariate kernel. Moreover, the estimate does not repre-
sent a probability density function (pdf), and is discontinu-
ous and heavy tailed. A truly adaptive (ABD) KDE would
require an optimal bandwidth for each dimension (VBW).
This means the kernel used would be elliptical, adapting
to the density of the data. This makes the VBW-KDEs
adaptable between dimensions. If H bandwidths are tried
in each dimension, the training time required for the näıve
implementation of KDEs would be O(HddN). To make this
locally adaptive for each dimension(AWD), the bandwidth
estimation would be required for each query q. Even the
faster methods (KDE∗) would require O(Hdd logN) train-
ing time for each query. This makes the computational cost
of CV for VBW-KDEs intractable even in medium dimen-
sions.

A recent algorithm [11] uses rodeo [17] to greedily select
adaptive bandwidths for a KDE in each dimension. Under
certain sparsity conditions on the unknown density function,
the resulting estimator is shown to empirically perform well
and obtain near optimal convergence rate for KDEs. The
local version (local r-KDE) of this estimator computes the
optimal bandwidth in every dimension for every query point.
The paper demonstrates rodeo’s adaptability – implicitly
identifying the dimensions of interest during the process of
bandwidth selection as well as identifying regions of inter-
est within a single dimension, selecting smaller bandwidths
where the density varies more rapidly. However, this tech-
nique is expensive, requiring a rodeo step for every single
query. The rodeo step is iterative and we are not aware of
its runtime bound. However, it is empirically faster than
LOO-CV for VBW-KDEs. The global-rodeo [11] (global r-
KDE) improves efficiency by using a fixed bandwidth within
each dimension, and estimating it by averaging the esti-
mated bandwidths for t training points in every dimension.
Hence, the resulting estimator loses local adaptability within
a dimension (property 2 of adaptability). The training time
now involves t rodeo steps instead of a rodeo step for each
query. The accuracy of the estimate obviously depends on
the t (larger number training queries imply more accurate
estimates and slower training).

KDEs can be made adaptable, however, at the cost of
computational complexity. Moreover, given the estimated
bandwidths, the time taken for a single query using the näıve
implementation of a KDE is O(dN). The cover-tree data
structure provides an approximate estimate in O(d logN)
query time. For O(N) queries, the query cost can be amor-
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tized over the queries using a tree-data-structure over the
queries, requiring a total time of O(dN) [16]2.

Decision trees are known for their adaptability over the
data (over features by implicit feature selection and within
dimensions by choosing different leaf size in different re-
gions). In this paper, we will demonstrate their adaptability
for the task of density estimation. However, training de-
cision trees using LOO-CV is an expensive step involving
the growing of the tree, and the subsequent cost-complexity
pruning [1, 7]. However this cost is amortized over the mul-
tiple empirically efficient queries. The query time for a de-
cision tree estimator is O(DT ) where DT is the depth of
a decision tree T . The worst case upper bound for DT is
O(N), but is empirically seen to be much tighter in practice
(much more closer to O(logN)). Hence decision trees also
bring efficiency to nonparametric density estimation at the
cost of some accuracy. Histograms are also fast nonparamet-
ric estimators during training as well as query time. They
require O(MdN) training time for trying M different bin-
widths and choosing the one with the best CV error. The
query time is a blazing O(d). However, they lack the adapt-
ability of decision trees, and become prohibitively inaccurate
as the number of dimensions increases.
Interpretability. We also propose the use of decision trees
for density estimation to introduce interpretability in the
nonparametric setting. The decision trees provide an inter-
esting overlap between the accuracy of nonparametric meth-
ods and the simplicity and interpretability of parametric
methods. Interpretability in density estimation can be use-
ful in the providing the following information about the den-
sity of the data: (1) detecting clusters and outliers (COD)
(2) providing relative variable/dimension importance (VI) –
identifying dimensions that significantly affect the density
(3) providing simple univariate rules – these simple rules
can be used, for example, for directly specifying some chunk
of a huge data set which sits on a DBMS database. In the
case of a DET, this chunk might represent a cluster.

MoGs are known to detect clusters but are incapable of
imparting any interpretability regarding the dimensions. The
aforementioned method using rodeo [11] implicitly does iden-
tify dimensions of interest. However, it is hard to obtain rel-
ative importance of dimensions by just looking at the values
of the estimated bandwidths. Moreover, cluster and outlier
detection is complicated with KDEs – an exhaustive scan of
the whole space provides regions of high (clusters) and low
density (outliers). So KDEs are not interpretable density
estimators. When accuracy is required with no concern over
computation time, adaptive-KDEs are the method of choice.
However, they might be too costly for exploratory analysis.

We attempt to achieve the properties of interpretability,
while retaining adaptability, by using the CART-style uni-
variate splits which gives rise to the uniquely readable rule
structure of decision trees. This key property is not shared
by the several other methods for density estimation involv-
ing hierarchical schemes which have been proposed over the
years. Determining dimensions of interest is a direct by-
product of the decision tree framework via the measure of
relative importance of predictor variables [1]3. While linear
models such as linear regression and linear SVMs yield such

2It is important to note that the spatial partitioning tree
building has a one-time cost of O(dN logN).
3We will define this measure in the technical section of the
paper.

Figure 1: Density estimate in form of a decision tree
and the relative variable importance.

a capability via examination of the linear coefficients, this
capability is harder to find in nonparametric methods. A
sorted list of the leaves of a DET can easily identify the
clusters and the outliers in the data.
All the aforementioned properties of these estimators are
summarized in Table 1. We further motivate the desirability
of interpretability of a decision tree in the following example:
Motivating example. Consider the density estimates for
the Iris data set (150 × 4)4 as a set of rules depicted in
Figure 1. Each leaf node contains the piecewise constant
density estimate. More explicitly, f̂(x) = 0.026 ∀x ∈ R1

(say). Here the leaf R1 = {x : x4 ≤ 0.2 & x3 ≤ 1.5}. We
have also listed the class memberships of the points in the
leaf nodes5. This figure also presents the relative importance
of the attributes.

The tree representation lets us easily find regions of rela-
tively high (R1) and low densities (R3). The subtree corre-
sponding to the regions R1 and R2 contains purely class 1,
representing the well-known linearly separable class in the
Iris data. The chart containing the relative importance of
the predictor variables implies that the petal length has the
highest importance with regards to the density, whereas, the
sepal length has no influence on the density (example of fea-
ture deletion).

Thus we see that density estimation in the decision tree
framework provides much more information about the data
than just the density estimates. There are several other
cases where it would be useful to get this kind of infor-
mation about the data: (1)Astronomy – performing den-
sity estimation on quasar data is a common task in as-
tronomy [18]. Common features in the data are colors.
The feature-importance analysis corresponding to the den-
sity will indicate the unimportant color features. This in-
formation can be useful in deciding which filters are useful
in future analyses, thereby, conserving resources. (2)Bioin-
formatics – consider a metabolomics data set containing pa-

4We will continue to represent the size of data sets with
N point with d attributes/dimensions in the form (N × d)
throughout this paper.
5We intend to perform density estimation only on the points
in the unsupervised setting. However, we provide class mem-
berships of the points in the node to motivate a well known
property of the Iris data set.
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tient information with over 20000 features, where the task
is to differentiate cancer patients from healthy patients [19].
Density estimation performed over all patients’ profiles can
reveal which features are responsible for the main variation
within, say, cancer patients, or within healthy patients. This
is different from feature selection for classification which
would select features which most differentiate the patients
with cancer from the rest. In addition, cluster and outlier
detection performed on this data set will produce interesting
and possibly crucial information.

Moreover, a representative partition of the state space by
itself sheds light on the underlying structure of the distri-
bution. Such information is particularly valuable in high
dimensional problems where direct visualization of the data
is difficult.
Remark. DETs are similar to variable bin-width histograms,
but are restricted only to a hierarchical partitioning of the
data (hence possibly having lower accuracy than the best
possible variable bin-width histogram, although our experi-
ments suggest otherwise).

1.2 Overview
The focus of this paper is to develop a rigorous decision-

tree-structured density estimator and demonstrate the use-
fulness and interpretability of the same.

In Section 2, we discuss existing connections between den-
sity estimation and decision trees. In the following section,
we define an estimator based on the decision tree and ap-
ply the decision-tree framework for density estimation using
this estimator. We also provide certain asymptotic prop-
erties of the decision-tree-structured estimator. Section 4
contains experimental results displaying the performance of
DETs with some comparisons with histograms and KDEs.
The adaptability of DETs is demonstrated by using some
synthetic data sets. High dimensional image data sets are
used to demonstrate the DETs’ interpretability and their
application to classification. Training and querying time of
DETs are compared with the fastest training and querying
method for KDEs (KDE∗s). In the final section, conclusions
are discussed along with certain open questions.

2. FURTHER RELATED WORK
Decision trees have been used alongside density estimation

in earlier works. For example, Kohavi, 1996 [20] and Smyth
et al., 1995 [21] use decision trees for the supervised task of
classification, and density estimation (with näıve Bayes clas-
sifiers and KDEs respectively) is used solely for the purpose
of obtaining a smoother and more accurate classification and
class-conditional probabilities in contrast to the piecewise
constant non-smooth estimates of the standard classification
trees. Decision trees been used for the task of diagnosing
extrapolation [22] by building a classification tree differen-
tiating the given data set from a random sample from a
uniform distribution in the support of the data set. This
tree provides a way to compute a measure for extrapolation.
This measure can be indirectly used to compute the density,
but the tree still performs classification. Decision trees have
also been used in the supervised setting for estimating the
joint probability (of the data and the label of the training
examples) [23] for censored data by replacing the standard
loss function (for example 0-1 loss or Gini-index) with the
negative loglikelihood of the joint density.

The idea of having a nested hierarchy of partitions of the

support of the data has been used for dicretization of univari-
ate data [24]. The set of observations are partitioned on the
basis of the density using the loglikelihood loss function. But
the focus is solely on univariate data. Decision trees have
also been used in an unsupervised setting to perform hierar-
chical clustering [25] but do not trivially translate to density
estimation. Siedl et al., 2009 [26] propose a novel method
for indexing the density model in the form of a tree (called
Bayes tree) for fast access with desired level of accuracy.
This tree is grown bottom-up from the estimate of a KDE
for the whole data set. The Bayes tree uses MoGs to index
the density at the intermediate levels (increasing the number
of Gaussians with the depth). This tree successfully locates
clusters in the data. However, being a MoG, it fails to de-
termine relative relevance of the dimensions. Pólya trees
[27] are hierarchical spatial partitioning trees but used as a
prior for probability measures over the data space. Density
estimation is done either by computing the posterior mean
density given this prior or “learning” a fixed tree topology
and computing the piecewise constant estimate conditional
on this topology.

DETs are related in spirit, however, they will be learned
by directly minimizing the density estimation loss and the
estimates are finally obtained directly from the tree. More-
over, the aforementioned methods, though hierarchical in
nature, do not share the interpretability and feature selec-
tion properties of decision trees, which are based on univari-
ate splits.

3. DENSITY ESTIMATION TREE
This section provides the road map to perform density es-

timation using decision trees. We define an estimator and
the corresponding loss function to be minimized during the
training of the decision tree for continuous and mixed data.
Following that, we explain the process of learning the op-
timal decision tree over the given sample and provide an
asymptotic property of the DET.

3.1 Continuous Features

Definition 1. The piecewise constant density estimate
of the decision tree T built on a set S of N observations in
R

d is defined as

f̂N (x) =
∑
l ∈T̃

|l |
NVl

I(x ∈ l ) (1)

where T̃ is the set of leaves of the decision tree T repre-
senting the partitions of the data space, |l | is the number of
observations of S in the leaf l , Vl is the volume of the leaf
l within the d dimensional bounding box of S and I(·) is the
indicator function.

A decision tree T requires a notion of a loss function R(T )
which is minimized using a greedy algorithm to construct a
tree on the set of observations. For the unsupervised task of
density estimation, we consider the Integrated Squared Er-
ror (ISE) loss function [10]. The ISE gives a notion of overall
distance between the estimated and the true density and is
a favored choice in nonparametric density estimation for its
inherent robustness in comparison to maximum-likelihood-
based loss functions [8]. However, other distance functions
such as the KL-divergence can be used as the loss function.
We will explore this in the longer version of the paper.
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The task of learning a DET would involve solving the
following optimization problem:

min
f̂N∈FN

∫
X

(
f̂N (x)− f(x)

)2
dx (2)

where FN is the class of estimators of form in Definition 1
that can learned with any set of N observations. After ex-
panding the square and the following Monte-Carlo substi-
tution

∫
X
f̂N (x)f(x)dx ≈ 1

N

∑N
i=1 f̂N (Xi) (where {Xi}Ni=1

is the training set), the objective function in Eq. 2 is re-
placed by the following consistent plug-in estimator of the
ISE [10]6:

min
f̂N∈FN

{∫
X

(
f̂N (x)

)2
dx− 2

N

N∑
i=1

f̂N (Xi)

}
(3)

Using the piecewise constant estimator from Definition 1
(which is constant within each leaf l ), the objective function
in Eq. 3 is replaced with the following:

∑
l ∈T̃

{∫
l

( |l |
NVl

)2

dx− 2

N

|l |
NVl

· |l |
}

(4)

by substituting

f̂2
N (x) =

∑
l ∈T̃

( |l |
NVl

)2

I(x ∈ l )

(since the cross terms in the expansion of f̂2
N (x) vanish be-

cause of the indicator function) and simple calculation shows
that

N∑
i=1

f̂N (Xi) =
N∑
i=1

∑
l ∈T̃

|l |
NVl

· I(Xi ∈ l ) =
∑
l ∈T̃

|l |
NVl

· |l |

By making the following substitution∫
l

( |l |
NVl

)2

dx =

( |l |
NVl

)2 ∫
l
dx =

( |l |
NVl

)2

· Vl ,

the estimator of the ISE for DET has the following form:

∑
l ∈T̃

{
− |l |2
N2Vl

}
(5)

Defining Eq. 5 as the error R(T ) of the tree, the greedy
surrogate of the error for any node t (internal or otherwise)
can be defined as

R(t) = − |t |2
N2Vt

. (6)

The tree is grown in a top down manner by maximizing the
reduction in this greedy surrogate of the error over the given
observations.

3.2 Mixed Features
For density estimation over data with mixed features, we

define a novel density estimator and a loss function involving
ordinal and categorical data along with continuous data that
can be used to learn DETs with mixed data:

6The term
∫
X
(f(x))2 dx is removed from the objective func-

tion since it is independent of the estimate and hence doesn’t
affect the optimum.

Definition 2. Let S ⊂ R
d × Z

d
′
× C

d
′′

with d real fea-

tures, d
′
ordinal features and d

′′
categorical features. The

piecewise constant density estimator of the decision tree T
built on S is defined as

f̂N (x) =
∑
l ∈T̃

|l | · I(x ∈ l )

N · Vld ·∏d
′
l

j=1 Rlj ·∏d
′′
l

i=1 Mli

(7)

where Vld is the volume of the leaf l within the d dimensional
bounding box of the real part of S, Rlj is the range of the

ordinal values in the jth of the d
′
l ordinal dimensions present

in l and Mli is the number of categories present in l for the

ith of the d
′′
l categorical dimensions present in l .

The error at a node t corresponding to the ISE is then ob-
tained as

R(t) = − |t |2

N2 · Vtd ·∏d
′
t

j=1 Rtj ·∏d
′′
t

i=1 Mti

(8)

where Vtd is the volume of the node t in the d real dimen-
sions, Rtj is the range of the ordinal values in the jth of the

d
′
t ordinal dimensions present in t and Mti is the number

of categories present in t for the ith of the d
′′
t categorical

dimensions present in t .

3.3 Tree Construction
We use the tree learning algorithm presented in Breiman,

et al.,1984 [1]. The splitting, pruning and the cross-validation
procedures are modified to work with this new loss function
and for the unsupervised task of density estimation.
Splitting. For growing the tree, each node is split into two
children. Let S be the set of all univariate splits.

Definition 3. [1] The best split s∗ of a node t is the split
in the set of splits S which maximally reduces R(T ).

This is done by greedily reducing R(t) for all the terminal
nodes t of the current tree. Hence, for any currently terminal
node, we need to find a split s∗ for a node t into tL and tR
such that

s∗ = argmax
s∈S

{R(t)−R(tL)−R(tR)} (9)

where |t | = |tL| + |tR|. For continuous and ordinal dimen-
sions, this optimization is performed by trying every |t | − 1
possible splits of the data in each of the dimensions. For
categorical dimensions, the splits are performed in the man-
ner similar to the CART model [1]. The splitting is stopped
when the node size |t | goes below a certain threshold (say
Nmin).
Pruning. To avoid overfitting, we use the minimal cost-
complexity pruning [1]. The regularized error of a subtree
rooted at a node t is defined as

Rα(t) = R(t̃) + α · |̃t | (10)

where α is a regularization parameter (to be estimated through
cross-validation) and t̃ is the set of leaves in the subtree
rooted at t . The value of α is gradually increased and
a subtree rooted at t is pruned for the value of α where
Rα(t) = Rα({t}), the regularized error of the pruned sub-
tree. Since the size of the initial tree constructed by the
splitting algorithm described previously is finite, the num-
ber of possible values of α at which a prune occurs is finite
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and can be calculated efficiently. Hence we only need to se-
lect the optimal α from a finite set of values (See Section 3.3
in Breiman, et al., 1984 [1] for complete details).
Cross-validation. The leave-one-out cross-validation
(LOO-CV) estimator of the density estimation loss function
in Eq. 3 is given by

Ĵ(α) =

∫
X

(
f̂α
N (x)

)2
dx− 2

N

N∑
i=1

f̂α
(−i)(Xi) (11)

where f̂α
N is the estimator with the decision tree T pruned

with a regularization parameter α, and f̂α
(−i) is the estimator

with the decision tree T(−i) built without the training ex-
ample Xi pruned with the regularization parameter α. This
LOO-CV estimator is obtained from Silverman, 1986 [10] by
switching the regularization parameter (replacing the band-
width with α). The best sized tree is the tree T pruned with
the parameter α∗ such that:

α∗ = argmin
α

Ĵ(α) (12)

3.4 Asymptotic Properties
We show that the method is nonparametric – it is con-

sistent under mild assumptions on the model class of the
input distribution f . Consistency is typically shown [28]

for a nonparametric estimator f̂N obtained from a set of N
observations by showing that

Pr

(
lim

N→∞

∫
X

(
f̂N (x)− f(x)

)2
dx = 0

)
= 1. (13)

We prove the consistency of DETs on data with continuous
features. The proof of consistency of the density estimator
proposed in Definition 1 follows arguments similar to those
used to show the consistency of regression trees [1] .

Theorem 1. The estimator f̂N defined in Definition 1
satisfies Eq. 13.

Proof. Given a fixed positive integer d1, let B denote
the collection of all sets t ⊂ X that can be described as
the solution set to a system of d1 inequalities, each of the
form bTx ≤ c for b ∈ R

d and c ∈ R. Now in a decision
tree T , every leaf l ∈ T̃ is the solution set of a system of
d1 inequalities of the form bTx ≤ c with b ∈ R

d with just
one entry equal to 1 and the rest of the entries equal to 0.
Therefore, T̃ ⊂ B.

Let Xn, n ≥ 1, be a random sample from a density func-
tion f on X. For N ≥ 1, let F̂N denote the empirical distri-
bution of Xn, 1 ≤ n ≤ N , defined on a set t ⊂ X by

F̂N (t) =
1

N

N∑
n=1

I(Xn ∈ t) =
|t|
N

=

∫
t

f̂N (x)dx (14)

where |t| is the number of random samples in the set t ∩
{Xn}Nn=1 and f̂N (x) is the estimator given in Definition 1.

According to a general version of the Glivenko-Cantelli
theorem [29],

Pr

(
lim

N→∞
sup
t∈B

|F̂N (t)−
∫
t

f(x)dx| = 0

)
= 1. (15)

By Eq.14 and 15, we get

Pr

(
lim

N→∞
sup
t∈B

|
∫
t

f̂N (x)dx−
∫
t

f(x)dx| = 0

)
= 1

⇒ Pr

(
lim

N→∞
sup
t∈B

∫
t

|f̂N (x)− f(x)|dx ≥ 0

)
= 1.

Assuming that limN→∞ Pr(diameter(t) ≥ ε) = 0, hence
Pr
(
limN→∞

∫
t
dx = 0

)
= 1, we get the following with prob-

ability 1

lim
N→∞

sup
t∈B

∫
t

|f̂N (x)− f(x)|dx ≤

lim
N→∞

|f̂N (x′)− f(x′)| ·
∫
t

dx for some x′ ∈ t = 0

This assumption is commonly used for the consistency of
data-partitioning estimators [30] and is justified since as
N → ∞, the diameter of any leaf node would become smaller
and smaller since the leaf node can only have a bounded
number of points. Hence

Pr

(
lim

N→∞
sup
t∈B

∫
t

|f̂N (x)− f(x)|dx = 0

)
= 1

⇒ Pr

(
lim

N→∞

∫
X

(
f̂N (x)− f(x)

)2
dx = 0

)
= 1.

Hence f̂N satisfies Eq. 13.

4. EXPERIMENTS
In this section, we demonstrate the performance of DETs

under different conditions using synthetic and real data sets.
Estimation accuracies of DETs are compared with existing
nonparametric estimators. We exhibit the interpretability
of DETs with two real data sets. Furthermore, density
estimates of DETs are applied to classification and subse-
quent labelling accuracies are presented. Finally, the speed
of training and querying DETs are presented on several real
data sets and compared with an existing method. We only
consider continuous and ordinal data in this paper for the
lack of space. Experiments with categorical and mixed data
will be presented in the longer version of the paper.

4.1 Estimation Accuracy: Synthetic Examples
For the unsupervised task of density estimation, estima-

tion accuracy can only be computed on synthetic data sets.
We choose the best-sized tree through LOO-CV. To com-
pute estimation error on synthetic data for density queries,
we use 2 measures: Root Mean Squared Error (RMSE) and
Hellinger Distance (HD). We compare DETs only with other
nonparametric density estimators since parametric estima-
tors would involve choosing the model class (like choosing
the number of Gaussians in MoGs). We report the com-
parison between DETs, histograms (bin-width selected by
LOO-CV) and KDEs (using the Gaussian kernel) with the
bandwidth selected by unbiased LOO-CV using the ISE cri-
terion (FBW) and by local rodeo (local r-KDE) (VBW) on
synthetic data sets.
Example 1. (Strongly skewed distribution in one dimen-
sion) This distribution is defined as

X ∼
7∑

i=0

1

8
N
(
3

((
2

3

)i

− 1

)
,

(
2

3

)2i
)
.

Figure 2 shows the estimated density functions by a DET,
a histogram and two KDEs for a sample size N = 1000.
Because of the high skewness of the density function, the
KDE (FBW) and the histogram fail to fit the very smooth
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Figure 2: The density estimates obtained with 1000
points for Example 1 using DET, Histogram and
KDEs compared to the true density.

Table 2: Estimation errors for Histograms, KDEs
and DETs with increasing number of observations

Type N Hist KDE(FBW) local r-KDE DET

RMSE
102 0.2213 0.1748 0.1318 0.2548
103 0.1158 0.0949 0.1339 0.1090
104 0.0565 0.0235 0.0596 0.0527

HD
102 0.1292 0.2365 0.0967 0.1187
103 0.0832 0.0684 0.2343 0.0278
104 0.01 0.0130 0.1634 0.0072

tail. The fixed bandwidth/binwidth results in a highly wig-
gly estimate of the very smooth tail. The DET provides a
piecewise constant estimate, but it adjusts to the different
parts of the density function by varying the leaf size – the
tree has small leaves closer to the spike where the density
function changes rapidly, having larger leaves where the den-
sity function does not change rapidly. This demonstrates the
adaptability of DETs within the same dimension. The local
r-KDE exhibits the same adaptability by obtaining different
bandwidths at different regions, hence capturing the smooth
tail of the true density.

Table 2 provides the estimation errors with increasing
sample sizes for the different methods. The RMSE values
are fairly close and the HD values for the DETs are in fact
better than that of KDE using unbiased LOO-CV. This can
be attributed to the adaptive nature of DET with respect
to the leaf sizes. The error values of local r-KDE are better
than DET when the data set size is small (in case of larger
data sets, the local method might be overfitting over this
instance of the data set). The accuracies of the histogram
estimators and DETs are comparable in this univariate ex-
ample. But we will demonstrate in the next example that
the performance of histograms decline with increasing di-
mensions.
Example 2. (Two dimensional data – Mixture of Beta dis-
tributions in one dimension, uniform in the other dimension)
We create a (600 × 2) data set by sampling one dimension
as a mixture of Beta distributions and the other dimension
as a uniform distribution

X1 ∼ 2

3
B(1, 2) + 1

3
B(10, 10);X2 ∼ U(0, 1).
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Figure 3: Perspective plots of the density estimates
for a DET, a Histogram and two KDEs on the data
set in Example 2.

Figure 3 shows the 2-dimensional density estimates of a
DET, a histogram and two KDEs. The DET fits the ir-
relevant uniform dimension perfectly, while closely approxi-
mating the mixture of Beta distributions in the relevant di-
mension. The KDE with fixed bandwidth and the histogram
estimator completely fail to fit the irrelevant dimension. The
local r-KDE does a better job of fitting the irrelevant dimen-
sion compared to the KDE (FBW), but still does not entirely
capture the uniform density.

4.2 Interpretability: Variable Importance
The decision-tree framework defines a measure of rele-

vance for each of the predictor variables [1] as following:

Definition 4. The measure of relevance Id (T ) for each
attribute Xd (the d th attribute) in a decision tree T is defined
as

Id (T ) =

|T̃ |−1∑
t=1

ι̂2t I(d(t) = d ) (16)

where the summation is over the |T̃ | − 1 internal nodes of
the tree T , and the attribute d(t) used to partition node t
obtains ι̂2t improvement in squared error over the constant
fit in node t .

We use this measure to present the interpretability of the
DETs on two real data sets.
Example 3. (Iris data set) We perform density estimation
on this 4 dimensional data set and compute variable impor-
tance for each of the dimensions. Figure 1 displays the tree
and the relative variable importance. The interpretation has
been explained in Section 1.1.
Example 4. (MNIST digits – image data) Each image has
28-by-28 pixels providing a 784-dimensional data set. We
perform density estimation on the 5851 images of the digit
8 (left panel of Figure 4). This is also an instance of per-
forming density estimation with ordinal data since the pixel
values are discrete. We compute the variable importance of
each of the dimensions (pixels in this case). The right panel
of Figure 4 displays the results obtained. The black pix-
els indicate pixels with zero variable importance in density
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(a) Originals (b) Variable Importance

Figure 4: Relative importance of the predictor vari-
ables (pixels in this case) in density estimation for
images of digit 8.

Table 3: Classification Accuracy: r-KDE vs. DET
Case # Train # Test r-KDE DET
1v7 240 121 0.93 0.91
2v7 237 119 0.97 0.87
3v8 238 119 0.81 0.81
5v8 237 119 0.86 0.72
8v9 236 118 0.75 0.77
All 1347 450 0.70 0.73

estimation. For the pixels with non-zero variable impor-
tance, the color transitions for green (indicating low relative
variable importance) to red (indicating high relative vari-
able importance). The marginal densities of many pixels
are close to point masses. Hence the density does not vary
at all in those dimensions, and the relative variable impor-
tance depicted in Figure 4 indicates that the DET is capable
of capturing this property of the data.

4.3 Classification
As mentioned earlier, density estimation is a common sub-

routine in classification where the class-conditional density
p̂(x|C) is to be estimated for the query point x using the

training setX. The estimated class Ĉ(x) = argmaxC P (x|C)·
P (C). We compare the accuracy of classification between
the density estimates computed by DETs and local r-KDEs.

Example 5. (Opt-digits – image data (1797 × 64) [31])
We conduct binary as well as multi-class classification. For
binary classification, we consider the following cases: 1 vs.
7, 2 vs. 7, 3 vs. 8, 5 vs. 8, 8 vs. 9. We perform multi-
class classification using all the classes (0-9). Table 3 lists
the classification accuracies for the different tasks. In most
cases, the accuracies are close for the two methods of den-
sity estimation, with the r-KDEs being more accurate than
the DETs. But in the last two cases, the DETs outperform
the r-KDEs. Moreover, the whole experiment (training and
testing) with the DETs is much faster than the one using
the local r-KDEs. For example, in the last experiment per-
forming multi-class classification required ∼ 8 seconds using
DETs and ∼ 500 seconds using r-KDEs7.

4.4 Speed
We compare DETs to KDE∗s(FBW) using the fast ap-

proximate dual-tree algorithm [32] with kd-trees. We use
LOO-CV to estimate the optimal bandwidth for the KDE∗s
7The DET is implemented in C++ and the rodeo-KDE is
implemented using MATLAB on the same machine.

Table 4: Timings (in seconds) for training(T) and
all queries(Q) with KDE∗s and DETs
Data set T(KDE∗) T(DET) Q(KDE∗) Q(DET)
sj2 93.77 485.77 11.79 0.0026
Colors 101.68 427.02 12.11 0.0022
Bio 421.22 1213.84 5.7 0.0069
Pall7 1240.75 1719.26 10.67 0.0046
psf 18039.27 32456.43 77.48 0.975

sj2 colors bio pall7 psf
10
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Figure 5: Query Time speedup for the DTE over the
KDE. Note that the KDE is faster than the DTE in
case of training.

(FBW). Real world data sets drawn from the SDSS reposi-
tory [33] (SJ2 (50000× 2), PSF (3000000× 2)) and the UCI
Machine Learning Repository [31] (Colors (50000 × 2), di-
mension reduced version of the Bio dataset (100000 × 5),
Pall7 (100000 × 7)) are used. The query set is same as the
training set in all the experiments and the KDE∗s provide
the leave-one-out estimates.

For the KDE∗, we use around H ≈ 10 bandwidths and
chose the one with the best CV error. Usually, a much
larger number of bandwidths are tried and the training times
scale linearly with H. For the DETs, we use 10-fold cross-
validation since we were not able to find an efficient way to
conduct LOO-CV with decision trees and it would require
prohibitively long time for these large data sets. This is one
major limitation of this method. Howeover, for sufficiently
large data sets, our experiments indicate that DETs trained
with LOO-CV are only slightly more accurate than those
with 10-fold CV.

The absolute timing values (in seconds) for training(T)
and querying(Q) are given in Table 4. The speedups of
the DETs over the KDE∗s in test/query time are shown in
Figure 5. As can be seen from the results, the training time
for the decision tree algorithm is significantly larger than
the LOO-CV for the KDE∗s, but the DETs provide up to
3.5 orders of magnitude speedup in query time. The KDE∗s
are fast to train, but their work comes at test time. This
experiment demonstrates the efficient querying of decision
trees while also indicating that the task of training decision
trees using LOO-CV is quite challenging.

5. DISCUSSION AND CONCLUSIONS
This framework of decision-tree-structured density esti-

mation provides a new way to estimate the density of a given
set of observations in the form of a simple set of rules which
are inherently intuitive and interpretable. This framework
has the capability of easily dealing with categorical, discrete
as well as continuous variables and performs automatic fea-
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ture selection. On having these rules, the density of a new
test point can be computed cheaply. All these features stem
from the fact that the density estimation is performed in the
form of a decision tree. Along with that, the DETs are eas-
ily implementable like supervised decision trees. Although
these advantages come with the loss of accuracy, the DETs
are shown to be consistent, and hence are quite reliable in
the presence of enough data.

Future directions of improvement include the reduction
of the discontinuities in the density estimate because of the
piecewise constant estimator and the boundary bias since
the DETs put no mass outside the span of the data. Bound-
ary bias is a common problem for almost all density esti-
mators. One possible remedy is to use a normalized KDE
at each of the leaves instead of using the piecewise constant
estimator (similar to the approach in Smyth et.al. [21].

An analysis of the convergence rate of the DETs would
quantify the amount of loss of accuracy to account for the
simplicity of the estimator. Being effectively a variable bin-
width histogram, we conjecture that the convergence rate for
the DETs would be o(N−2/3) for univariate data and better
than histograms in higher dimensions since we demonstrate
that the DETs can effectively model uninformative dimen-
sions easily without requiring that extra number of points
as imposed by the curse of dimensionality. Moreover, we are
actively working on obtaining density dependent bounds on
the depth of the DETs to quantify the runtimes for training
and test query.

Overall, this method for density estimation has immediate
application to various fields of data analysis (for example,
outlier and anomaly detection)8 and machine learning due
to its simple and interpretable solution to the fundamental
task of density estimation.
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