
mlpack 3: a fast, flexible machine learning library
Ryan R. Curtin1, Marcus Edel2, Mikhail Lozhnikov3, Yannis
Mentekidis5, Sumedh Ghaisas5, and Shangtong Zhang4

1 Center for Advanced Machine Learning, Symantec Corporation 2 Institute of Computer Science,
Free University of Berlin 3 Moscow State University, Faculty of Mechanics and Mathematics 4
University of Alberta 5 NoneDOI: 10.21105/joss.00726

Software
• Review
• Repository
• Archive

Submitted: 24 April 2018
Published: 18 June 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

In the past several years, the field of machine learning has seen an explosion of interest
and excitement, with hundreds or thousands of algorithms developed for different tasks
every year. But a primary problem faced by the field is the ability to scale to larger
and larger data—since it is known that training on larger datasets typically produces
better results (Halevy, Norvig, and Pereira 2009). Therefore, the development of new
algorithms for the continued growth of the field depends largely on the existence of good
tooling and libraries that enable researchers and practitioners to quickly prototype and
develop solutions (Sonnenburg et al. 2007). Simultaneously, useful libraries must also be
efficient and well-implemented. This has motivated our development of mlpack.
mlpack is a flexible and fast machine learning library written in C++ that has bindings
that allow use from the command-line and from Python, with support for other languages
in active development. mlpack has been developed actively for over 10 years (Curtin et
al. 2011, Curtin, Cline, et al. (2013)), with over 100 contributors from around the world,
and is a frequent mentoring organization in the Google Summer of Code program (https:
//summerofcode.withgoogle.com). If used in C++, the library allows flexibility with no
speed penalty through policy-based design and template metaprogramming (Alexandrescu
2001); but bindings are available to other languages, which allow easy use of the fast
mlpack codebase.
For fast linear algebra, mlpack is built on the Armadillo C++ matrix library (Sander-
son and Curtin 2016), which in turn can use an optimized BLAS implementation such
as OpenBLAS (Xianyi, Qian, and Saar 2018) or even NVBLAS (NVIDIA 2015) which
would allow mlpack algorithms to be run on the GPU. In order to provide fast code, tem-
plate metaprogramming is used throughout the library to reduce runtime overhead by
performing any possible computations and optimizations at compile time. An automatic
benchmarking system is developed and used to test the efficiency of mlpack’s algorithms
(Edel, Soni, and Curtin 2014).
mlpack contains a number of standard machine learning algorithms, such as logistic regres-
sion, random forests, and k-means clustering, and also contains cutting-edge techniques
such as a compile-time optimized deep learning and reinforcement learning framework,
dual-tree algorithms for nearest neighbor search and other tasks (Curtin, March, et al.
2013), a generic optimization framework with numerous optimizers (Curtin et al. 2017), a
generic hyper-parameter tuner, and other recently published machine learning algorithms.
For a more comprehensive introduction to mlpack, see the website at http://www.mlpack.
org/ or a recent paper detailing the design and structure of mlpack (Curtin and Edel 2017).

Curtin et al., (2018). mlpack 3: a fast, flexible machine learning library. Journal of Open Source Software, 3(26), 726.
https://doi.org/10.21105/joss.00726

1

https://doi.org/10.21105/joss.00726
https://github.com/openjournals/joss-reviews/issues/726
https://github.com/mlpack/mlpack
http://dx.doi.org/10.5281/zenodo.1292120
http://creativecommons.org/licenses/by/4.0/
https://summerofcode.withgoogle.com
https://summerofcode.withgoogle.com
http://www.mlpack.org/
http://www.mlpack.org/
https://doi.org/10.21105/joss.00726


References

Alexandrescu, A. 2001. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley.
Curtin, R.R., and M. Edel. 2017. “Designing and Building the Mlpack Open-Source
Machine Learning Library.” arXiv Preprint arXiv:1708.05279.
Curtin, R.R., S. Bhardwaj, M. Edel, and Y. Mentekidis. 2017. “A Generic and Fast C++
Optimization Framework.” arXiv Preprint arXiv:1711.06581.
Curtin, R.R., J.R. Cline, N.P. Slagle, M.L. Amidon, and A.G. Gray. 2011. “mlpack: A
Scalable C++ Machine Learning Library.” In BigLearning: Algorithms, Systems, and
Tools for Learning at Scale. https://doi.org/10.1.1.676.5625.
Curtin, R.R., J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, and A.G. Gray.
2013. “mlpack: A Scalable C++ Machine Learning Library.” Journal of Machine Learning
Research 14:801–5.
Curtin, R.R., W.B. March, P. Ram, D.V. Anderson, A.G. Gray, and C.L. Isbell Jr. 2013.
“Tree-Independent Dual-Tree Algorithms.” In Proceedings of the 30th International Con-
ference on Machine Learning (Icml ’13), 1435–43.
Edel, M., A. Soni, and R.R. Curtin. 2014. “An Automatic Benchmarking System.” In
Proceedings of the Nips 2014 Workshop on Software Engineering for Machine Learning.
Halevy, A., P. Norvig, and F. Pereira. 2009. “The Unreasonable Effectiveness of Data.”
IEEE Intelligent Systems 24 (2). IEEE:8–12. https://doi.org/10.1109/MIS.2009.36.
NVIDIA. 2015. “NVBLAS Library.” http://docs.nvidia.com/cuda/nvblas.
Sanderson, C., and R.R. Curtin. 2016. “Armadillo: A Template-Based C++ Library for
Linear Algebra.” Journal of Open Source Software. Journal of Open Source Software.
https://doi.org/10.21105/joss.00026.
Sonnenburg, S., M.L. Braun, C.S. Ong, S. Bengio, L. Bottou, G. Holmes, Y. LeCun, et al.
2007. “The Need for Open Source Software in Machine Learning.” Journal of Machine
Learning Research 8 (Oct):2443–66.
Xianyi, Z., W. Qian, and W. Saar. 2018. “OpenBLAS: An Optimized BLAS Library.”
http://www.openblas.net.

Curtin et al., (2018). mlpack 3: a fast, flexible machine learning library. Journal of Open Source Software, 3(26), 726.
https://doi.org/10.21105/joss.00726

2

https://doi.org/10.1.1.676.5625
https://doi.org/10.1109/MIS.2009.36
http://docs.nvidia.com/cuda/nvblas
https://doi.org/10.21105/joss.00026
http://www.openblas.net
https://doi.org/10.21105/joss.00726

	Summary
	References

