The select module selects the specified dimensions from a given input point. More...
Public Member Functions | |
SelectType (const size_t index=0, const size_t elements=0) | |
Create the Select object. More... | |
void | Backward (const InputType &, const OutputType &gy, OutputType &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
SelectType * | Clone () const |
Clone the SelectType object. This handles polymorphism correctly. More... | |
void | Forward (const InputType &input, OutputType &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
const size_t & | Index () const |
Get the column index. More... | |
const size_t & | NumElements () const |
Get the number of elements selected. More... | |
const std::vector< size_t > | OutputDimensions () const |
template < typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. More... | |
![]() | |
Layer () | |
Default constructor. More... | |
Layer (const Layer &layer) | |
Copy constructor. This is not responsible for copying weights! More... | |
Layer (Layer &&layer) | |
Move constructor. This is not responsible for moving weights! More... | |
virtual | ~Layer () |
Default deconstructor. More... | |
virtual void | Backward (const InputType &, const InputType &, InputType &) |
Performs a backpropagation step through the layer, with respect to the given input. More... | |
virtual void | ComputeOutputDimensions () |
Compute the output dimensions. More... | |
virtual void | CustomInitialize (InputType &, const size_t) |
Override the weight matrix of the layer. More... | |
virtual void | Forward (const InputType &, InputType &) |
Takes an input object, and computes the corresponding output of the layer. More... | |
virtual void | Forward (const InputType &, const InputType &) |
Takes an input and output object, and computes the corresponding loss of the layer. More... | |
virtual void | Gradient (const InputType &, const InputType &, InputType &) |
Computing the gradient of the layer with respect to its own input. More... | |
const std::vector< size_t > & | InputDimensions () const |
Get the input dimensions. More... | |
std::vector< size_t > & | InputDimensions () |
Modify the input dimensions. More... | |
virtual double | Loss () |
Get the layer loss. More... | |
virtual Layer & | operator= (const Layer &layer) |
Copy assignment operator. This is not responsible for copying weights! More... | |
virtual Layer & | operator= (Layer &&layer) |
Move assignment operator. This is not responsible for moving weights! More... | |
const std::vector< size_t > & | OutputDimensions () |
Get the output dimensions. More... | |
virtual size_t | OutputSize () final |
Get the number of elements in the output from this layer. More... | |
virtual const InputType & | Parameters () const |
Get the parameters. More... | |
virtual InputType & | Parameters () |
Set the parameters. More... | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. More... | |
virtual void | SetWeights (typename InputType ::elem_type *) |
Reset the layer parameter. More... | |
virtual bool const & | Training () const |
Get whether the layer is currently in training mode. More... | |
virtual bool & | Training () |
Modify whether the layer is currently in training mode. More... | |
virtual size_t | WeightSize () const |
Get the total number of trainable weights in the layer. More... | |
Additional Inherited Members | |
![]() | |
std::vector< size_t > | inputDimensions |
Logical input dimensions of each point. More... | |
std::vector< size_t > | outputDimensions |
Logical output dimensions of each point. More... | |
bool | training |
If true, the layer is in training mode; otherwise, it is in testing mode. More... | |
bool | validOutputDimensions |
This is true if ComputeOutputDimensions() has been called, and outputDimensions can be considered to be up-to-date. More... | |
The select module selects the specified dimensions from a given input point.
InputType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 34 of file select.hpp.
SelectType | ( | const size_t | index = 0 , |
const size_t | elements = 0 |
||
) |
Create the Select object.
index | The first dimension to extract from the input. |
elements | The number of elements that should be used. If 0 is given, then all dimensions starting with index up to the number of dimensions are used. |
Referenced by SelectType< InputType, OutputType >::Clone().
void Backward | ( | const InputType & | , |
const OutputType & | gy, | ||
OutputType & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
Referenced by SelectType< InputType, OutputType >::Clone().
|
inlinevirtual |
Clone the SelectType object. This handles polymorphism correctly.
Implements Layer< InputType, OutputType >.
Definition at line 48 of file select.hpp.
References SelectType< InputType, OutputType >::Backward(), SelectType< InputType, OutputType >::Forward(), and SelectType< InputType, OutputType >::SelectType().
void Forward | ( | const InputType & | input, |
OutputType & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
Referenced by SelectType< InputType, OutputType >::Clone().
|
inline |
Get the column index.
Definition at line 73 of file select.hpp.
|
inline |
Get the number of elements selected.
Definition at line 76 of file select.hpp.
References SelectType< InputType, OutputType >::serialize().
|
inline |
Definition at line 84 of file select.hpp.
References Layer< InputType, OutputType >::inputDimensions, and Layer< InputType, OutputType >::outputDimensions.
void serialize | ( | Archive & | ar, |
const uint32_t | |||
) |
Serialize the layer.
Referenced by SelectType< InputType, OutputType >::NumElements().