Implementation of the log softmax layer. More...
Public Member Functions | |
LogSoftMaxType () | |
Create the LogSoftmax layer. More... | |
LogSoftMaxType (const LogSoftMaxType &other) | |
Copy the given LogSoftMaxType. More... | |
LogSoftMaxType (LogSoftMaxType &&other) | |
Take ownership of the given LogSoftMaxType. More... | |
virtual | ~LogSoftMaxType () |
void | Backward (const MatType &input, const MatType &gy, MatType &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
LogSoftMaxType * | Clone () const |
Clone the LogSoftMaxType object. This handles polymorphism correctly. More... | |
void | Forward (const MatType &input, MatType &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
LogSoftMaxType & | operator= (const LogSoftMaxType &other) |
Copy the given LogSoftMaxType. More... | |
LogSoftMaxType & | operator= (LogSoftMaxType &&other) |
Take ownership of the given LogSoftMaxType. More... | |
template < typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
![]() | |
Layer () | |
Default constructor. More... | |
Layer (const Layer &layer) | |
Copy constructor. This is not responsible for copying weights! More... | |
Layer (Layer &&layer) | |
Move constructor. This is not responsible for moving weights! More... | |
virtual | ~Layer () |
Default deconstructor. More... | |
virtual void | ComputeOutputDimensions () |
Compute the output dimensions. More... | |
virtual void | CustomInitialize (MatType &, const size_t) |
Override the weight matrix of the layer. More... | |
virtual void | Forward (const MatType &, const MatType &) |
Takes an input and output object, and computes the corresponding loss of the layer. More... | |
virtual void | Gradient (const MatType &, const MatType &, MatType &) |
Computing the gradient of the layer with respect to its own input. More... | |
const std::vector< size_t > & | InputDimensions () const |
Get the input dimensions. More... | |
std::vector< size_t > & | InputDimensions () |
Modify the input dimensions. More... | |
virtual double | Loss () |
Get the layer loss. More... | |
virtual Layer & | operator= (const Layer &layer) |
Copy assignment operator. This is not responsible for copying weights! More... | |
virtual Layer & | operator= (Layer &&layer) |
Move assignment operator. This is not responsible for moving weights! More... | |
const std::vector< size_t > & | OutputDimensions () |
Get the output dimensions. More... | |
virtual size_t | OutputSize () final |
Get the number of elements in the output from this layer. More... | |
virtual const MatType & | Parameters () const |
Get the parameters. More... | |
virtual MatType & | Parameters () |
Set the parameters. More... | |
template < typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. More... | |
virtual void | SetWeights (typename MatType::elem_type *) |
Reset the layer parameter. More... | |
virtual bool const & | Training () const |
Get whether the layer is currently in training mode. More... | |
virtual bool & | Training () |
Modify whether the layer is currently in training mode. More... | |
virtual size_t | WeightSize () const |
Get the total number of trainable weights in the layer. More... | |
Additional Inherited Members | |
![]() | |
std::vector< size_t > | inputDimensions |
Logical input dimensions of each point. More... | |
std::vector< size_t > | outputDimensions |
Logical output dimensions of each point. More... | |
bool | training |
If true, the layer is in training mode; otherwise, it is in testing mode. More... | |
bool | validOutputDimensions |
This is true if ComputeOutputDimensions() has been called, and outputDimensions can be considered to be up-to-date. More... | |
Implementation of the log softmax layer.
The log softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. This layer is meant to be used in combination with the negative log likelihood layer (NegativeLogLikelihoodLayer), which expects that the input contains log-probabilities for each class.
MatType | Matrix representation to accept as input and use for computation. |
Definition at line 33 of file log_softmax.hpp.
LogSoftMaxType | ( | ) |
Create the LogSoftmax layer.
Referenced by LogSoftMaxType< MatType >::Clone(), and LogSoftMaxType< MatType >::~LogSoftMaxType().
|
inlinevirtual |
Definition at line 45 of file log_softmax.hpp.
References LogSoftMaxType< MatType >::Backward(), LogSoftMaxType< MatType >::Forward(), LogSoftMaxType< MatType >::LogSoftMaxType(), and LogSoftMaxType< MatType >::operator=().
LogSoftMaxType | ( | const LogSoftMaxType< MatType > & | other | ) |
Copy the given LogSoftMaxType.
LogSoftMaxType | ( | LogSoftMaxType< MatType > && | other | ) |
Take ownership of the given LogSoftMaxType.
|
virtual |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
input | The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
Reimplemented from Layer< MatType >.
Referenced by LogSoftMaxType< MatType >::~LogSoftMaxType().
|
inlinevirtual |
Clone the LogSoftMaxType object. This handles polymorphism correctly.
Implements Layer< MatType >.
Definition at line 42 of file log_softmax.hpp.
References LogSoftMaxType< MatType >::LogSoftMaxType().
|
virtual |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
Reimplemented from Layer< MatType >.
Referenced by LogSoftMaxType< MatType >::~LogSoftMaxType().
LogSoftMaxType& operator= | ( | const LogSoftMaxType< MatType > & | other | ) |
Copy the given LogSoftMaxType.
Referenced by LogSoftMaxType< MatType >::~LogSoftMaxType().
LogSoftMaxType& operator= | ( | LogSoftMaxType< MatType > && | other | ) |
Take ownership of the given LogSoftMaxType.
|
inline |
Definition at line 77 of file log_softmax.hpp.