Hard Shrink operator is defined as,. More...
Public Member Functions | |
HardShrinkType (const double lambda=0.5) | |
Create HardShrink object using specified hyperparameter lambda. More... | |
void | Backward (const InputType &input, const OutputType &gy, OutputType &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More... | |
HardShrinkType * | Clone () const |
Clone the HardShrinkType object. This handles polymorphism correctly. More... | |
void | Forward (const InputType &input, OutputType &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
double const & | Lambda () const |
Get the hyperparameter lambda. More... | |
double & | Lambda () |
Modify the hyperparameter lambda. More... | |
template < typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. More... | |
![]() | |
Layer () | |
Default constructor. More... | |
Layer (const Layer &layer) | |
Copy constructor. This is not responsible for copying weights! More... | |
Layer (Layer &&layer) | |
Move constructor. This is not responsible for moving weights! More... | |
virtual | ~Layer () |
Default deconstructor. More... | |
virtual void | Backward (const InputType &, const InputType &, InputType &) |
Performs a backpropagation step through the layer, with respect to the given input. More... | |
virtual void | ComputeOutputDimensions () |
Compute the output dimensions. More... | |
virtual void | CustomInitialize (InputType &, const size_t) |
Override the weight matrix of the layer. More... | |
virtual void | Forward (const InputType &, InputType &) |
Takes an input object, and computes the corresponding output of the layer. More... | |
virtual void | Forward (const InputType &, const InputType &) |
Takes an input and output object, and computes the corresponding loss of the layer. More... | |
virtual void | Gradient (const InputType &, const InputType &, InputType &) |
Computing the gradient of the layer with respect to its own input. More... | |
const std::vector< size_t > & | InputDimensions () const |
Get the input dimensions. More... | |
std::vector< size_t > & | InputDimensions () |
Modify the input dimensions. More... | |
virtual double | Loss () |
Get the layer loss. More... | |
virtual Layer & | operator= (const Layer &layer) |
Copy assignment operator. This is not responsible for copying weights! More... | |
virtual Layer & | operator= (Layer &&layer) |
Move assignment operator. This is not responsible for moving weights! More... | |
const std::vector< size_t > & | OutputDimensions () |
Get the output dimensions. More... | |
virtual size_t | OutputSize () final |
Get the number of elements in the output from this layer. More... | |
virtual const InputType & | Parameters () const |
Get the parameters. More... | |
virtual InputType & | Parameters () |
Set the parameters. More... | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. More... | |
virtual void | SetWeights (typename InputType ::elem_type *) |
Reset the layer parameter. More... | |
virtual bool const & | Training () const |
Get whether the layer is currently in training mode. More... | |
virtual bool & | Training () |
Modify whether the layer is currently in training mode. More... | |
virtual size_t | WeightSize () const |
Get the total number of trainable weights in the layer. More... | |
Additional Inherited Members | |
![]() | |
std::vector< size_t > | inputDimensions |
Logical input dimensions of each point. More... | |
std::vector< size_t > | outputDimensions |
Logical output dimensions of each point. More... | |
bool | training |
If true, the layer is in training mode; otherwise, it is in testing mode. More... | |
bool | validOutputDimensions |
This is true if ComputeOutputDimensions() has been called, and outputDimensions can be considered to be up-to-date. More... | |
Hard Shrink operator is defined as,.
is set to 0.5 by default.
InputType | The type of the layer's inputs. The layer automatically cast inputs to this type (Default: arma::mat). |
OutputType | The type of the computation which also causes the output to also be in this type. The type also allows the computation and weight type to differ from the input type (Default: arma::mat). |
Definition at line 50 of file hardshrink.hpp.
HardShrinkType | ( | const double | lambda = 0.5 | ) |
Create HardShrink object using specified hyperparameter lambda.
lambda | Is calculated by multiplying the noise level sigma of the input(noisy image) and a coefficient 'a' which is one of the training parameters. Default value of lambda is 0.5. |
Referenced by HardShrinkType< InputType, OutputType >::Clone().
void Backward | ( | const InputType & | input, |
const OutputType & | gy, | ||
OutputType & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
input | The propagated input activation f(x). |
gy | The backpropagated error. |
g | The calculated gradient. |
Referenced by HardShrinkType< InputType, OutputType >::Clone().
|
inlinevirtual |
Clone the HardShrinkType object. This handles polymorphism correctly.
Implements Layer< InputType, OutputType >.
Definition at line 63 of file hardshrink.hpp.
References HardShrinkType< InputType, OutputType >::Backward(), HardShrinkType< InputType, OutputType >::Forward(), and HardShrinkType< InputType, OutputType >::HardShrinkType().
void Forward | ( | const InputType & | input, |
OutputType & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the Hard Shrink function. |
output | Resulting output activation. |
Referenced by HardShrinkType< InputType, OutputType >::Clone().
|
inline |
Get the hyperparameter lambda.
Definition at line 86 of file hardshrink.hpp.
|
inline |
Modify the hyperparameter lambda.
Definition at line 88 of file hardshrink.hpp.
References HardShrinkType< InputType, OutputType >::serialize().
void serialize | ( | Archive & | ar, |
const uint32_t | |||
) |
Serialize the layer.
Referenced by HardShrinkType< InputType, OutputType >::Lambda().