CReLUType< InputType, OutputType > Class Template Reference

A concatenated ReLU has two outputs, one ReLU and one negative ReLU, concatenated together. More...

Inheritance diagram for CReLUType< InputType, OutputType >:

Public Member Functions

 CReLUType ()
 Create the CReLU object. More...

 
void Backward (const InputType &input, const OutputType &gy, OutputType &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More...

 
CReLUTypeClone () const
 Clone the CReLUType object. This handles polymorphism correctly. More...

 
void Forward (const InputType &input, OutputType &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...

 
template
<
typename
Archive
>
void serialize (Archive &, const uint32_t)
 Serialize the layer. More...

 
- Public Member Functions inherited from Layer< InputType, OutputType >
 Layer ()
 Default constructor. More...

 
 Layer (const Layer &layer)
 Copy constructor. This is not responsible for copying weights! More...

 
 Layer (Layer &&layer)
 Move constructor. This is not responsible for moving weights! More...

 
virtual ~Layer ()
 Default deconstructor. More...

 
virtual void Backward (const InputType &, const InputType &, InputType &)
 Performs a backpropagation step through the layer, with respect to the given input. More...

 
virtual void ComputeOutputDimensions ()
 Compute the output dimensions. More...

 
virtual void CustomInitialize (InputType &, const size_t)
 Override the weight matrix of the layer. More...

 
virtual void Forward (const InputType &, InputType &)
 Takes an input object, and computes the corresponding output of the layer. More...

 
virtual void Forward (const InputType &, const InputType &)
 Takes an input and output object, and computes the corresponding loss of the layer. More...

 
virtual void Gradient (const InputType &, const InputType &, InputType &)
 Computing the gradient of the layer with respect to its own input. More...

 
const std::vector< size_t > & InputDimensions () const
 Get the input dimensions. More...

 
std::vector< size_t > & InputDimensions ()
 Modify the input dimensions. More...

 
virtual double Loss ()
 Get the layer loss. More...

 
virtual Layeroperator= (const Layer &layer)
 Copy assignment operator. This is not responsible for copying weights! More...

 
virtual Layeroperator= (Layer &&layer)
 Move assignment operator. This is not responsible for moving weights! More...

 
const std::vector< size_t > & OutputDimensions ()
 Get the output dimensions. More...

 
virtual size_t OutputSize () final
 Get the number of elements in the output from this layer. More...

 
virtual const InputType & Parameters () const
 Get the parameters. More...

 
virtual InputType & Parameters ()
 Set the parameters. More...

 
void serialize (Archive &ar, const uint32_t)
 Serialize the layer. More...

 
virtual void SetWeights (typename InputType ::elem_type *)
 Reset the layer parameter. More...

 
virtual bool const & Training () const
 Get whether the layer is currently in training mode. More...

 
virtual bool & Training ()
 Modify whether the layer is currently in training mode. More...

 
virtual size_t WeightSize () const
 Get the total number of trainable weights in the layer. More...

 

Additional Inherited Members

- Protected Attributes inherited from Layer< InputType, OutputType >
std::vector< size_t > inputDimensions
 Logical input dimensions of each point. More...

 
std::vector< size_t > outputDimensions
 Logical output dimensions of each point. More...

 
bool training
 If true, the layer is in training mode; otherwise, it is in testing mode. More...

 
bool validOutputDimensions
 This is true if ComputeOutputDimensions() has been called, and outputDimensions can be considered to be up-to-date. More...

 

Detailed Description


template
<
typename
InputType
=
arma::mat
,
typename
OutputType
=
arma::mat
>

class mlpack::ann::CReLUType< InputType, OutputType >

A concatenated ReLU has two outputs, one ReLU and one negative ReLU, concatenated together.

In other words, for positive x it produces [x, 0], and for negative x it produces [0, x]. Because it has two outputs, CReLU doubles the output dimension.

Note: The CReLU doubles the output size.

For more information, see the following.

@inproceedings{ICML2016,
title = {Understanding and Improving Convolutional Neural Networks
via Concatenated Rectified Linear Units},
author = {LWenling Shang, Kihyuk Sohn, Diogo Almeida, Honglak Lee},
year = {2016},
url = {https://arxiv.org/abs/1603.05201}
}
Template Parameters
InputTypeThe type of the layer's inputs. The layer automatically cast inputs to this type (Default: arma::mat).
OutputTypeThe type of the computation which also causes the output to also be in this type. The type also allows the computation and weight type to differ from the input type (Default: arma::mat).

Definition at line 50 of file c_relu.hpp.

Constructor & Destructor Documentation

◆ CReLUType()

CReLUType ( )

Create the CReLU object.

Referenced by CReLUType< InputType, OutputType >::Clone().

Member Function Documentation

◆ Backward()

void Backward ( const InputType &  input,
const OutputType &  gy,
OutputType &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.

Using the results from the feed forward pass.

Parameters
inputThe propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

Referenced by CReLUType< InputType, OutputType >::Clone().

◆ Clone()

◆ Forward()

void Forward ( const InputType &  input,
OutputType &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Works only for 2D Tensors.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

Referenced by CReLUType< InputType, OutputType >::Clone().

◆ serialize()

void serialize ( Archive &  ,
const uint32_t   
)

Serialize the layer.

Referenced by CReLUType< InputType, OutputType >::Clone().


The documentation for this class was generated from the following file:
  • /home/jenkins-mlpack/mlpack.org/_src/mlpack-git/src/mlpack/methods/ann/layer/not_adapted/c_relu.hpp