Implementation of the Padding module class. More...
Public Member Functions | |
Padding (const size_t padWLeft=0, const size_t padWRight=0, const size_t padHTop=0, const size_t padHBottom=0) | |
Create the Padding object using the specified number of output units. More... | |
template < typename eT > | |
void | Backward (const arma::Mat< eT > &&, const arma::Mat< eT > &&gy, arma::Mat< eT > &&g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
OutputDataType const & | Delta () const |
Get the delta. More... | |
OutputDataType & | Delta () |
Modify the delta. More... | |
template < typename eT > | |
void | Forward (const arma::Mat< eT > &&input, arma::Mat< eT > &&output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
OutputDataType const & | OutputParameter () const |
Get the output parameter. More... | |
OutputDataType & | OutputParameter () |
Modify the output parameter. More... | |
template < typename Archive > | |
void | serialize (Archive &ar, const unsigned int) |
Serialize the layer. More... | |
Implementation of the Padding module class.
The Padding module applies a bias term to the incoming data.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 68 of file layer_types.hpp.
Padding | ( | const size_t | padWLeft = 0 , |
const size_t | padWRight = 0 , |
||
const size_t | padHTop = 0 , |
||
const size_t | padHBottom = 0 |
||
) |
Create the Padding object using the specified number of output units.
padWLeft | Left padding width of the input. |
padWLeft | Right padding width of the input. |
padHTop | Top padding height of the input. |
padHBottom | Bottom padding height of the input. |
void Backward | ( | const arma::Mat< eT > && | , |
const arma::Mat< eT > && | gy, | ||
arma::Mat< eT > && | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
input | The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
|
inline |
Get the delta.
Definition at line 80 of file padding.hpp.
|
inline |
Modify the delta.
Definition at line 82 of file padding.hpp.
References Padding< InputDataType, OutputDataType >::serialize().
void Forward | ( | const arma::Mat< eT > && | input, |
arma::Mat< eT > && | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
|
inline |
Get the output parameter.
Definition at line 75 of file padding.hpp.
|
inline |
Modify the output parameter.
Definition at line 77 of file padding.hpp.
void serialize | ( | Archive & | ar, |
const unsigned | int | ||
) |
Serialize the layer.
Referenced by Padding< InputDataType, OutputDataType >::Delta().